Subscribe to RSS
DOI: 10.1055/s-0033-1350898
Catechol Conjugates Are In Vivo Metabolites of Salicis cortex
Publication History
received 22 April 2013
revised 22 August 2013
accepted 27 August 2013
Publication Date:
21 October 2013 (online)
Abstract
After oral administration of 100 mg/kg b. w. (235.8 µmol/kg) salicortin to Wistar rats, peak serum concentrations of 1.43 mg/L (13.0 µM) catechol were detected after 0.5 h in addition to salicylic acid by HPLC-DAD after serum processing with β-glucuronidase and sulphatase. Both metabolites could also be detected in the serum of healthy volunteers following oral administration of a willow bark extract (Salicis cortex, Salix spec., Salicaceae) corresponding to 240 mg of salicin after processing with both enzymes. In humans, the cmax (1.46 mg/L, 13.3 µM) of catechol was reached after 1.2 h. The predominant phase-II metabolite in humans and rats was catechol sulphate, determined by HPLC analysis of serum samples processed with only one kind of enzyme. Without serum processing with glucuronidase and sulphatase, no unconjugated catechol could be detected in human and animal serum samples. As catechol is described as an anti-inflammatory compound, these results may contribute to the elucidation of the mechanism of the action of willow bark extract.
Key words
Salix - Salicaceae - catechol - salicortin - metabolism - conjugates - salicylic acid - pharmacokinetic study - in vivo-
References
- 1 Meier B, Julkunen-Tiitto R, Tahvanainen J, Sticher O. Comparative high-performance liquid and gas-liquid chromatographic determination of phenolic glucosides in Salicaceae species. J Chromatogr 1988; 442: 175-186
- 2 Hsu FL, Nonaka GI, Nishioka I. Acylated flavanols and procyanidins from Salix sieboldiana . Phytochemistry 1985; 24: 2089-2092
- 3 Jürgenliemk G, Petereit F, Nahrstedt A. Flavan-3-ols and procyanidins from the bark of Salix purpurea L. Pharmazie 2007; 62: 231-234
- 4 Ruuhola T, Julkunen-Tiitto R, Vainiotalo P. In vitro degradation of willow salicylates. J Chem Ecol 2003; 29: 1083-1097
- 5 Knuth S, Schübel H, Hellemann M, Jürgenliemk G. Catechol, a bioactive degradation product of salicortin, reduces TNF-α induced ICAM-1 expression in human endothelial cells. Planta Med 2011; 77: 1024-1026
- 6 Fujioka K, Shibamoto T. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity. J Agric Food Chem 2006; 54: 6054-6058
- 7 Lang R, Mueller C, Hofmann T. Development of a stable isotope dilution analysis with liquid chromatography-tandem mass spectrometry detection for the quantitative analysis of di- and trihydroxybenzenes in foods and model systems. J Agric Food Chem 2006; 54: 5755-5762
- 8 Ma Q, Kinneer K. Chemoprotection by phenolic antioxidants. Inhibition of tumor necrosis factor alpha induction in macrophages. J Biol Chem 2002; 277: 2477-2484
- 9 Zheng LT, Ryu G, Kwon B, Lee W, Suk K. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur J Pharmacol 2008; 588: 106-113
- 10 Yang H, Lee SH, Sung SH, Kim J, Kim YC. Neuroprotective compounds from Salix pseudo-lasiogyne twigs and their anti-amnesic effects on scopolamine-induced memory deficit in mice. Planta Med 2013; 79: 78-82
- 11 Khor TO, Yu S, Kong AN. Dietary cancer chemopreventive agents – targeting inflammation and Nrf2 signaling pathway. Planta Med 2008; 74: 1540-1547
- 12 Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008; 74: 1526-1539
- 13 Zenkov NK, Menshchikova EB, Tkachev VO. Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry 2013; 78: 19-36
- 14 Ishikado A, Sono Y, Matsumoto M, Robida-Stubbs S, Okuno A, Goto M, King GL, Blackwell K, Makino T. Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans . Free Radic Biol Med 2013;
- 15 Akao T, Yoshino T, Kobashi K, Hattori M. Evaluation of salicin as an antipyretic prodrug that does not cause gastric injury. Planta Med 2002; 68: 714-718
- 16 Fötsch G, Pfeifer S, Bartoszek M, Franke P, Hiller K. Biotransformation der Phenolglykoside Leiocarposid und Salicin. Pharmazie 1989; 44: 555-558
- 17 Schmid B, Kötter I, Heide L. Pharmacokinetics of salicin after oral administration of a standardised willow bark extract. Eur J Clin Pharmacol 2001; 57: 387-391
- 18 Pentz R, Busse HG, König R, Siegers C. Bioverfügbarkeit von Salicylsäure und Coffein aus einem phytoanalgetischen Kombinationspräparat. Dtsch Apoth Ztg 1989; 129: 277-279
- 19 Khayyal MT, El-Ghazaly MA, Abdallah DM, Okpanyi SN, Kelber O, Weiser D. Mechanisms involved in the anti-inflammatory effect of a standardized Willow bark extract. Arzneimittelforschung 2005; 55: 677-687
- 20 El-Shazly A, El-Sayed A, Fikrey E. Bioactive secondary metabolites from Salix tetrasperma Roxb. Z Naturforsch C 2012; 67: 353-359
- 21 Chrubasik S, Eisenberg E, Balan E, Weinberger T, Luzzati R, Conradt C. Treatment of low back pain exacerbations with willow bark extract: a randomized double-blind study. Am J Med 2000; 109: 9-14
- 22 Schmid B, Lüdtke R, Selbmann HK, Kötter I, Tschirdewahn B, Schaffner W, Heide L. Efficacy and tolerability of a standardized willow bark extract in patients with osteoarthritis: randomized placebo-controlled, double blind clinical trial. Phytother Res 2001; 15: 344-350
- 23 Vlachojannis JE, Cameron M, Chrubasik S. A systematic review on the effectiveness of willow bark for musculoskeletal pain. Phytother Res 2009; 23: 897-900
- 24 Nahrstedt A, Schmidt M, Jäggi R, Metz J, Khayyal MT. Willow bark extract: the contribution of polyphenols to the overall effect. Wien Med Wochenschr 2007; 157: 348-351
- 25 Pearl I, Darling S. The structures of salicortin and tremulacin. Phytochemistry 1971; 10: 3161-3166
- 26 Buß T. Studie über die Einnahme von Weidenrinden-Extrakt, Salicin und Salicortin sowie Synthesen von Salicylsäure-Glycosiden und Salicin-Analoga [dissertation]. Marburg: University of Marburg; 2005
- 27 Aktories K, Forth W, Allgaier C. Allgemeine und spezielle Pharmakologie und Toxikologie, 10th edition. München: Elsevier, Urban & Fischer; 2009
- 28 de la Torre R. Bioavailibility of olive oil phenolic compounds in humans. Inflammopharmacology 2008; 16: 245-247
- 29 Richard N, Arnold S, Hoeller U, Kilpert C, Wertz K, Schwager J. Hydroxytyrosol is the major anti-inflammatory compound in aqueous olive extracts and impairs cytokine and chemokine production in macrophages. Planta Med 2011; 77: 1890-1897
- 30 Lodi F, Winterbone MS, Tribolo S, Needs PW, Hughes DA, Kroon PA. Human quercetin conjugated metabolites attenuate TNF-α-induced changes in vasomodulatory molecules in an HUASMCs/HUVECs co-culture model. Planta Med 2012; 78: 1571-1573
- 31 Fang SH, Hou YC, Chang WC, Hsiu SL, Chao PD, Chiang BL. Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shoc. Life Sci 2003; 74: 743-756
- 32 Shimoi K, Nakayama T. Glucuronidase deconjugation in inflammation. Methods in enzymology. Amsterdam: Elsevier; 2005: 263-272
- 33 Galindo P, Rodriguez-Gómez I, González-Manzano S, Dueñas M, Jiménez R, Menéndez C, Vargas F, Tamargo J, Santos-Buelga C, Pérez-Vizcaino F, Duarte J. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS ONE 2012; 7: e32673
- 34 ESCOP Monographs. 2nd. edition. Stuttgart: Thieme; 2003: 445-451