OP-Journal 2013; 29(2): 200-204
DOI: 10.1055/s-0033-1350664
Georg Thieme Verlag KG Stuttgart · New York

Zukünftige Optionen zur Rekonstruktion bei ausgedehnten knöchernen Defekten im Kiefer-, Gesichts- und Schädelbereich mittels CAD/CAM-gefertigter bioaktiver Leitschienen

Future Options for Reconstruction of Extensive Bony Defects in the Craniomaxillofacial Region Using CAD/CAM-Constructed Biological Scaffolds
Florian Andreas Probst
,
Egon Burian
,
Riham Fliefel
,
Michael Ehrenfeld
,
Sven Otto
Further Information

Publication History

Publication Date:
20 January 2014 (online)

Zusammenfassung

Großdimensionierte knöcherne Defektsituationen stellen eine beträchtliche Herausforderung für die Mund-, Kiefer- und Gesichtschirurgie dar. Tissue-Engineering-(TE-)Anwendungen haben das Potenzial, in Zukunft eine vielversprechende Alternative zu autologen Regenerationstechniken zu sein. Derzeit gilt bspw. die Verwendung von Kompositscaffolds aus Tricalciumphosphat (TCP) und Polymeren sowie deren Besiedelung mit mesenchymalen Stammzellen oder Fettstammzellen als aussichtsreiche Tissue-Engineering-Strategie. CAD-CAM-Verfahren könnten dabei wesentlich dazu beitragen, die komplexe Morphologie des Gesichtsschädels zu rekonstruieren. Denkbare Indikationen zu Tissue-Engineering-Applikationen bestehen z. B. bei Kontinuitätsdefekten des Unterkiefers, Mittelgesichts- und Kalottendefekten sowie knöchernen Defekten des Kieferspaltbereichs.

Abstract

Large bony defects represent a considerable challenge in craniomaxillofacial surgery. Tissue engineering applications have the ability to serve as an alternative solution to autologous bone transplants. Currently, the use of composite scaffolds made out of TCP or polymers and their subsequent seeding with stem cells can be considered a promising strategy. These stem cells are either derived from bone marrow or adipose tissue. CAD-CAM procedures strongly contribute to reconstruction of the complex craniofacial morphology. Possible indications for TE applications in craniomaxillofacial surgery can be segmental defects of the mandible as well as defects of the mid-face and calvaria.

 
  • Literatur

  • 1 Burstein FD, Williams KJ, Hudgins R et al. Hydroxyapatite cement in craniofacial reconstruction: experience in 150 patients. Plast Reconstr Surg 2006; 118: 484-489
  • 2 Chao MT, Jiang S, Smith D et al. Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method for reconstruction of large-scale defects in the pediatric calvaria. Plast Reconstr Surg 2009; 123: 976-982
  • 3 Chim H, Schantz JT. New frontiers in calvarial reconstruction: integrating computer-assisted design and tissue engineering in cranioplasty. Plast Reconstr Surg 2005; 116: 1726-1741
  • 4 Davies JE, Baksh D. Bone Tissue Engineering and biodegradable Scaffolds. In: Ikada Y, Shimizu Y. Tissue Engineering for therapeutic Use. Amsterdam: Elsevier Science; 2000: 15
  • 5 Fischer J, Kolk A, Wolfart S et al. Future of local bone regeneration – protein versus gene therapy. J Craniomaxillofac Surg 2011; 39: 54-64
  • 6 Griffin M, Iqbal SA, Bayat A. Exploring the application of mesenchymal stem cells in bone repair and regeneration. J Bone Joint Surg Br 2011; 93: 427-434
  • 7 Handschel J, Wiesmann HP, Depprich R et al. Cell-based bone reconstruction therapies–cell sources. Int J Oral Maxillofac Implants 2006; 21: 890-898
  • 8 Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 2010; 224: 1415-1440
  • 9 Jones E, Yang X. Mesenchymal stem cells and bone regeneration: current status. Injury 2011; 42: 562-568
  • 10 Kanatas AN, Mehanna HM, Lowe D et al. A second national survey of health-related quality of life questionnaires in head and neck oncology. Ann R Coll Surg Engl 2009; 91: 420-425
  • 11 Kempen DH, Creemers LB, Alblas J et al. Growth factor interactions in bone regeneration. Tissue Eng Part B Rev 2010; 16: 551-566
  • 12 Lam CX, Hutmacher DW, Schantz JT et al. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 2009; 90: 906-919
  • 13 Laurencin C, Khan Y, El Amin SF. Bone graft substitutes. Expert Rev Med Devices 2006; 3: 49-57
  • 14 Lee K, Chan CK, Patil N et al. Cell therapy for bone regeneration–bench to bedside. J Biomed Mater Res B Appl Biomater 2009; 89: 252-263
  • 15 Leukers B, Gulkan H, Irsen SH et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 2005; 16: 1121-1124
  • 16 Li WZ, Zhang MC, Li SP et al. Application of computer-aided three-dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture. Int J Med Robot 2009; 5: 158-163
  • 17 Lovett M, Lee K, Edwards A et al. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 2009; 15: 353-370
  • 18 Mischen BT, Follmar KF, Moyer KE et al. Metabolic and functional characterization of human adipose-derived SCs in tissue engineering. Plast Reconstr Surg 2008; 122: 725-738
  • 19 Nguyen LH, Annabi N, Nikkhah M et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev 2012; 18: 363-382
  • 20 Oringer RJ. Biological mediators for periodontal and bone regeneration. Compend Contin Educ Dent 2002; 23: 501-504 506–510, 512 passim; quiz 518
  • 21 Pham AM, Rafii AA, Metzger MC et al. Computer modeling and intraoperative navigation in maxillofacial surgery. Otolaryngol Head Neck Surg 2007; 137: 624-631
  • 22 Probst FA, Hutmacher DW, Müller DF et al. Calvarial reconstruction by customized bioactive implant. Handchir Mikrochir Plast Chir 2010; 42: 369-373
  • 23 Rogers SN. Quality of life perspectives in patients with oral cancer. Oral Oncol 2010; 46: 445-447
  • 24 Swyer AA, Song SJ, Susanto E et al. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials 2009; 30: 2479-2488
  • 25 Schieker M, Seitz H, Seitz S et al. Biomaterials as scaffold for bone tissue engineering. Eur J Traum 2007; 32: 114-124
  • 26 Schieker M, Mutschler W. Die Überbrückung von posttraumatischen Knochendefekten. Unfallchirurg 2006; 109: 715-732
  • 27 Seeherman H, Wozney J, Li R. Bone morphogenetic protein delivery systems. Spine 2002; 27: S16-S23
  • 28 Seitz H, Rieder W, Irsen S et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2005; 74: 782-788
  • 29 Seong JM, Kim BC, Park JH et al. Stem cells in bone tissue engineering. Biomed Mater 2010; 5: 062001
  • 30 Szpalski C, Barbaro M, Sagebin F et al. Bone tissue engineering: current strategies and techniques–part II: Cell types. Tissue Eng Part B Rev 2012; 18: 258-269
  • 31 Tanner KE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H 2010; 224: 1359-1372
  • 32 Wang L, Fan H, Zhang ZY et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 2010; 31: 9452-9461
  • 33 Yeo A, Rai B, Sju E et al. The degradation profile of novel, bioresorbable PCL-TCP scaffolds: an in vitro and in vivo study. J Biomed Mater Res A 2008; 84: 208-218
  • 34 Zanetti AS, Sabliov C, Gimble JM et al. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater 2013; 101: 187-199
  • 35 Zein I, Hutmacher DW, Tan KC et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002; 23: 1169-1185
  • 36 Zhang ZY, Teoh SH, Chong MS et al. Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials 2010; 31: 608-620
  • 37 Zhao M, Zhou J, Li X et al. Repair of bone defect with vascularized tissue engineered bone graft seeded with mesenchymal stem cells in rabbits. Microsurgery 2011; 31: 130-137
  • 38 Zhou Y, Hutmacher DW, Varawan S-L et al. In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites. Polym Int 2007; 56: 333-342