RSS-Feed abonnieren
DOI: 10.1055/s-0033-1350510
Patient-Activated Three-Dimensional Multifrequency Magnetic Resonance Elastography for High-Resolution Mechanical Imaging of the Liver and Spleen
Patienten-aktivierte dreidimensionale Multifrequenz-Magnetresonanzelastografie zur hochauflösenden mechanischen Bildgebung der Leber und MilzPublikationsverlauf
15. März 2013
25. Juli 2013
Publikationsdatum:
02. September 2013 (online)
Abstract
Purpose: To introduce a novel in-vivo three-dimensional multifrequency magnetic resonance elastography (3D-MMRE) method for high-resolution mechanical characterization of the liver and spleen.
Materials and Methods: Ten healthy volunteers were examined by abdominal single-shot 3D-MMRE using a novel patient-activated trigger system with respiratory control. 10 contiguous slices with 2.5 mm cubic voxel resolution, 3 wave components, 8 time steps, and 2 averages were acquired at 7 mechanical excitation frequencies from 30 to 60 Hz. The total imaging time was approximately 15 min. For postprocessing, multifrequency dual elasto-visco (MDEV) inversion was used to calculate high-resolution mechanical parameter maps of the abdomen including the liver and spleen.
Results: Two parameters maps were generated from each image slice to capture the magnitude and the phase angle of the complex shear modulus. Both parameters depicted the mechanical structures of the abdomen with unprecedented high spatial resolution. Spatially averaged group mean values of the liver and spleen are 1.27 ± 0.17 kPa and 2.01 ± 0.69 kPa, indicating a significantly higher asymptomatic stiffness of the spleen compared to the liver.
Conclusion: Patient-activated respiratory-gated 3D-MMRE combined with MDEV inversion provides highly resolved mechanical maps of the liver and spleen that are superior to previous elastograms measured by abdominal MRE.
Citation Format:
• Guo J, Hirsch S, Streitberger KJ et al. Patient-Activated Three-Dimensional Multifrequency Magnetic Resonance Elastography for High-Resolution Mechanical Imaging of the Liver and Spleen. Fortschr Röntgenstr 2014; 186: 260 – 266
Zusammenfassung
Ziel: Entwicklung und Demonstration einer neuen dreidimensionalen Mehrfrequenz-Magnetresonanzelastografie-Mehode (3-D-MMRE) zur hochauflösenden mechanischen in vivo Bildgebung der Leber und Milz.
Material und Methoden: Zehn gesunde Freiwillige wurden mittels abdominaler single-shot 3-D-MMRE unter Anwendung eines neuartigen Patienten-aktivierten Atemtrigger-Systems untersucht. Zeitaufgelöste Wellenfelder in zehn zusammenhängende Schichten mit 2,5 mm kubischer Pixel-Auflösung, 3 Wellenkomponenten, 8 Zeitschritten, 2 Mittelungen und 7 Frequenzen zwischen 30 und 60 Hz wurden innerhalb von 15 min aufgenommen und mittels Mehrfrequenz-dual-elasto-visco (MDEV) Inversion analysiert.
Ergebnisse: Karten der zwei unabhängigen mechanischer Kenngrößen, Betrag und Phase des komplexen Moduls, wurden in hoher räumlicher Auflösung erzielt. Details der mechanischen Struktur der Leber und der Milz sind gut erkennbar. Die Leber erscheint mit gemittelten Elastizitätswerte von 1,27 ± 0,17 kPa wesentlich weicher als die Milz, für die eine Elastizität von 2,01 ± 0,69 kPa gefunden wurde.
Schlussfolgerung: Patienten-aktivierte 3-D-MMRE kombiniert mit MDEV-Inversion stellt die erste Modalität zur hochauflösenden mechanischen Bildgebung von Leber und Milz dar und verspricht damit genauere MRE-Untersuchungen als bisherige Systeme.
-
References
- 1 Friedrich-Rust M, Ong MF, Martens S et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 2008; 134: 960-974
- 2 Bonekamp S, Kamel I, Solga S et al. Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately?. J Hepatol 2009; 50: 17-35
- 3 Talwalkar JA, Kurtz DM, Schoenleber SJ et al. Ultrasound-based transient elastography for the detection of hepatic fibrosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2007; 5: 1214-1220
- 4 Castera L. Noninvasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology 2012; 142: 1293-1302 e1294
- 5 Vappou J. Magnetic resonance- and ultrasound imaging-based elasticity imaging methods: a review. Critical reviews in biomedical engineering 2012; 40: 121-134
- 6 Friedrich-Rust M, Ong MF, Herrmann E et al. Real-time elastography for noninvasive assessment of liver fibrosis in chronic viral hepatitis. Am J Roentgenol Am J Roentgenol 2007; 188: 758-764
- 7 Ziol M, Handra-Luca A, Kettaneh A et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54
- 8 Rouviere O, Yin M, Dresner MA et al. MR elastography of the liver: preliminary results. Radiology 2006; 240: 440-448
- 9 Palmeri ML, Wang MH, Dahl JJ et al. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol 2008; 34: 546-558
- 10 Muthupillai R, Lomas DJ, Rossman PJ et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269 (5232) 1854-1857
- 11 Huwart L, Peeters F, Sinkus R et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19: 173-179
- 12 Yin M, Talwalkar JA, Glaser KJ et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5: 1207-1213 e1202
- 13 Asbach P, Klatt D, Schlosser B et al. Viscoelasticity-based Staging of Hepatic Fibrosis with Multifrequency MR Elastography. Radiology 2010; 257: 80-86
- 14 Hirsch S, Guo J, Reiter R et al. MR Elastography of the Liver and the Spleen Using a Piezoelectric Driver, Single-Shot Wave-Field Acquisition, and Multifrequency Dual Parameter Reconstruction. Magnetic Resonance in Medicine 2013; DOI: 10.1002/jmri.24165.
- 15 Doyley MM. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys Med Biol 2012; 57: R35-R73
- 16 Klatt D, Asbach P, Rump J et al. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol 2006; 41: 841-848
- 17 Dzyubak B, Glaser K, Yin M et al. Automated liver stiffness measurements with magnetic resonance elastography. J Magn Reson Imaging 2013; DOI: 10.1002/jmri.23980. . [Epub ahead of print]
- 18 Papazoglou S, Hirsch S, Braun J et al. Multifrequency inversion in magnetic resonance elastography. Phys Med Biol 2012; 57: 2329-2346
- 19 Hirsch S, Klatt D, Freimann F et al. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med 2012; doi DOI: 10.1002/mrm.24499. . [Epub ahead of print]
- 20 Huwart L, Sempoux C, Vicaut E et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 2008; 135: 32-40
- 21 Garteiser P, Doblas S, Daire JL et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol 2012; 22: 2169-2177
- 22 Venkatesh SK, Yin M, Glockner JF et al. MR elastography of liver tumors: preliminary results. Am J Roentgenol Am J Roentgenol 2008; 190: 1534-1540
- 23 Kamphues C, Klatt D, Bova R et al. Viscoelasticity-based magnetic resonance elastography for the assessment of liver fibrosis in hepatitis C patients after liver transplantation. Fortschr Röntgenstr 2012; 184: 1013-1019
- 24 Nedredal GI, Yin M, McKenzie T et al. Portal hypertension correlates with splenic stiffness as measured with MR elastography. J Magn Reson Imaging 2011; 34: 79-87
- 25 Uffmann K, Abicht C, Grote W et al. Design of an MR-Compatible piezoelectric actuator for MR elastography. Concept Magnetic Res 2002; 15: 239-254
- 26 Rump J, Klatt D, Braun J et al. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 2007; 57: 388-395
- 27 Papazoglou S, Xu C, Hamhaber U et al. Scatter-based magnetic resonance elastography. Phys Med Biol 2009; 54: 2229-2241
- 28 Hirsch S, Posnansky O, Papazoglou S et al. Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 2012; doi DOI: 10.1002/mrm.24294. . [Epub ahead of print]
- 29 Anderssen RS, Hegland M. For numerical differentiation, dimensionality can be a blessing!. Math Comput 1999; 68 (227) 1121-1141
- 30 McLaughlin JR, Zhang N, Manduca A. Calculating tissue shear modulus and pressure by 2D Log-Elastographic methods. Inverse Probl 2010; 26
- 31 Sinkus R, Tanter M, Catheline S et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med 2005; 53: 372-387
- 32 Huwart L, Sempoux C, Salameh N et al. Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology 2007; 245: 458-466
- 33 Talwalkar JA, Yin M, Venkatesh S et al. Feasibility of in vivo MR elastographic splenic stiffness measurements in the assessment of portal hypertension. Am J Roentgenol Am J Roentgenol 2009; 193: 122-127
- 34 Asbach P, Klatt D, Hamhaber U et al. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med 2008; 60: 373-379
- 35 Klatt D, Asbach P, Somasundaram R et al. Assessment of the Solid-Liquid Behavior of the Liver for the Diagnosis of Diffuse Disease Using Magnetic Resonance Elastography. Fortschr Röntgenstr 2008; 180: 1104-1109
- 36 Bensamoun SF, Wang L, Robert L et al. Measurement of liver stiffness with two imaging techniques: magnetic resonance elastography and ultrasound elastometry. J Magn Reson Imaging 2008; 28: 1287-1292
- 37 Crespo G, Fernandez-Varo G, Marino Z et al. ARFI, FibroScan, ELF, and their combinations in the assessment of liver fibrosis: a prospective study. J Hepatol 2012; 57: 281-287
- 38 Yoneda M, Suzuki K, Kato S et al. Nonalcoholic fatty liver disease: US-based acoustic radiation force impulse elastography. Radiology 2010; 256: 640-647
- 39 Posnansky O, Guo J, Hirsch S et al. Fractal network dimension and viscoelastic powerlaw behavior: I. A modeling approach based on a coarse-graining procedure combined with shear oscillatory rheometry. Phys Med Biol 2012; 57: 4023-4040
- 40 Rouviere O, Souchon R, Pagnoux G et al. Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults. J Magn Reson Imaging 2011; 34: 880-886
- 41 Thormer G, Reiss-Zimmermann M, Otto J et al. Novel technique for MR elastography of the prostate using a modified standard endorectal coil as actuator. J Magn Reson Imaging 2013; DOI: 10.1002/jmri.23850. . [Epub ahead of print]
- 42 Sahebjavaher RS, Baghani A, Honarvar M et al. Transperineal prostate MR elastography: Initial in vivo results. Magn Reson Med 2013; doi DOI: 10.1002/mrm.24268. . [Epub ahead of print]
- 43 Sun LT, Ning CP, Liu YJ et al. Is transvaginal elastography useful in pre-operative diagnosis of cervical cancer?. European journal of radiology 2012; 81: e888-e892
- 44 Thomas A, Kummel S, Gemeinhardt O et al. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Academic radiology 2007; 14: 193-200
- 45 Weaver JB, Pattison AJ, McGarry MD et al. Brain mechanical property measurement using MRE with intrinsic activation. Phys Med Biol 2012; 57: 7275-7287
- 46 Lemke AJ, Brinkmann MJ, Schott T et al. Living Donor Right Liver Lobes: Preoperative CT Volumetric Measurement for Calculation of Intraoperative Weight and Volume. Radiology 2006;