Rofo 2013; 185(12): 1167-1174
DOI: 10.1055/s-0033-1350130
Herz
© Georg Thieme Verlag KG Stuttgart · New York

Detection of Cardiovascular Disease in Elite Athletes Using Cardiac Magnetic Resonance Imaging

Kardiale Magnetresonanztomografie zur Risikostratifizierung in Leistungssportlern
S. Mangold
1   Department of Diagnostic and Interventional Radiology, University of Tuebingen
,
U. Kramer
1   Department of Diagnostic and Interventional Radiology, University of Tuebingen
,
E. Franzen
2   Department of Internal Medicine V, Sports Medicine, University of Tuebingen
,
G. Erz
2   Department of Internal Medicine V, Sports Medicine, University of Tuebingen
,
C. Bretschneider
1   Department of Diagnostic and Interventional Radiology, University of Tuebingen
,
A. Seeger
3   Department of Diagnostic and Interventional Neuroradiology, University of Tuebingen, Tuebingen
,
C. D. Claussen
1   Department of Diagnostic and Interventional Radiology, University of Tuebingen
,
A. M. Niess
2   Department of Internal Medicine V, Sports Medicine, University of Tuebingen
,
C. Burgstahler
2   Department of Internal Medicine V, Sports Medicine, University of Tuebingen
› Author Affiliations
Further Information

Publication History

02 April 2013

14 June 2013

Publication Date:
29 July 2013 (online)

Abstract

Purpose: Sudden cardiac death [SCD] in competitive athletes is caused by a diverse set of cardiovascular diseases such as hypertrophic and dilated cardiomyopathy [HCM/DCM], myocarditis, coronary anomalies or even coronary artery disease. In order to identify potential risk factors responsible for SCD, elite athletes underwent cardiac magnetic resonance [CMR] imaging.

Materials and Methods: 73 male [M] and 22 female [F] athletes (mean age 35.2 ± 11.4 years) underwent CMR imaging. ECG-gated breath-hold cine SSFP sequences were used for the evaluation of wall motion abnormalities and myocardial hypertrophy as well as for quantitative analysis (left and right ventricular [LV, RV] end-diastolic and end-systolic volume [EDV, ESV], stroke volume [SV], ejection fraction [EF] and myocardial mass [MM]). Furthermore, left and right atrial sizes were assessed by planimetry and delayed enhancement imaging was performed 10 minutes after the application of contrast agent. Coronary arteries were depicted using free-breathing Flash-3 D MR angiography.

Results: The quantitative analyses showed eccentric hypertrophy of the left ventricle (remodeling index [MM/LV-EDV]: M 0.75, F 0.665), enlargement of the RV volumes (RV-EDV: M 122.6 ± 19.0 ml/m², F 99.9 ± 7.2 ml/m²) and an increased SV (LV-SV: M 64.7 ± 10.0 ml/m², F 56.5 ± 5.7 ml/m²; RV-SV; M 66.7 ± 10.4 ml/m², F 54.2 ± 7.1 ml/m²). Abnormal findings were detected in 6 athletes (6.3 %) including one benign variant of coronary anomaly and abnormal late gadolinium enhancement in 2 cases. None of the athletes showed wall motion abnormalities or signs of myocardial ischemia.

Conclusion: CMR imaging of endurance athletes revealed abnormal findings in more than 5 % of the athletes. However, the prognostic significance remains unclear. Thus, cardiac MRI cannot be recommended as a routine examination in the care of athletes.

Key points:

  • CMR imaging helps clinicians to detect cardiovascular diseases in elite athletes.

  • Differentiation between physiological adaptations and DCM/HCM can be a challenging task.

  • Routine cardiac MRI examinations of endurance athletes cannot be recommended.

Citation Format:

  • Mangold S, Kramer U, FranzenE et al. Detection of Cardiovascular Disease in Elite Athletes Using Cardiac Magnetic Resonance Imaging. Fortschr Röntgenstr 2013; 185: 1167 – 1174

Zusammenfassung

Ziel: In der Genese von plötzlichem Herztod bei Leistungssportlern spielen neben der hypertrophen und dilatativen Kardiomyopathie [HCM/DCM] auch die Myokarditis, Koronaranomalien und ischämische Herzerkrankungen eine wichtige Rolle. Zur Abklärung dieser potentiellen Risikofaktoren erfolgte die Durchführung einer kardialen Magnetresonanztomografie [MRT].

Material und Methoden: 73 männliche [M] und 22 weibliche [F] Athleten (Durchschnittsalter 35,2 ± 11,4 Jahre) wurden einer kardialen MRT zugeführt. EKG-getriggerte cine SSFP Sequenzen wurden verwendet um Wandbewegungsstörungen und Myokardhypertrophien zu diagnostizieren und um quantitative Auswertungen durchzuführen (links- und rechtsventrikuläres [LV, RV] enddiastolisches und endsystolisches Volumen [EDV, ESV], Schlagvolumen [SV], Ejektionsfraktion [EF] und die Myokardmasse [MM]). Zusätzlich wurden die Vorhofgrößen planimetrisch erfasst und Kontrastmittel injiziert, um fibrotische Veränderungen des Myokards nachzuweisen. Die Darstellung der Koronararterien erfolgte mittels einer Flash-3-D-MR-Angiografie.

Ergebnisse: Die quantitativen Analysen zeigten eine exzentrische LV-Hypertrophie (remodeling index [MM/LV-EDV]: männlich 0,75, weiblich 0,665), erhöhte RV-Volumina (RV-EDV: M 122,6 ± 19,0 ml/m², F 99,9 ± 7,2 ml/m²) sowie erhöhte SV (LV-SV: M 64,7 ± 10,0 ml/m², F 56,5 ± 5,7 ml/m²; RV-SV: M 66,7 ± 10,4 ml/m², F 54,2 ± 7,1 ml/m²). Pathologische Befunde fanden sich in 6 Athleten (6,3 %), darunter eine benigne Variante einer Koronaranomalie sowie fibrotische Myokardveränderungen in 2 Fällen. Wandbewegungsstörungen oder postischämische Veränderungen fanden sich hingegen nicht.

Schlussfolgerung: Die durchgeführte kardiale MRT in Leistungssportlern zeigte pathologische Befunde in über 5 % der Athleten, wobei die prognostische Relevanz solcher Befunde zunächst nicht abschließend zu beurteilen ist. Daher ist die routinemäßige Durchführung einer kardialen MRT in Leistungssportlern primär nicht zu empfehlen.

Kernaussagen:

  • Die MRT liefert einen wichtigen Beitrag zur Diagnostik von kardiovaskulären Erkrankungen in Athleten.

  • Die Differenzierung von physiologischen Anpassungsreaktionen und einer DCM/HCM stellt eine große Herausforderung dar.

  • Eine routinemäßige Durchführung einer kardialen MRT in Leistungssportlern kann nicht empfohlen werden.

 
  • References

  • 1 Prakken NH, Velthuis BK, Cramer MJ et al. Advances in cardiac imaging: the role of magnetic resonance imaging and computed tomography in identifying athletes at risk. Br J Sports Med 2009; 43: 677-684
  • 2 Corrado D, Basso C, Rizzoli G et al. Does sports activity enhance the risk of sudden death in adolescents and young adults?. J Am Coll Cardiol 2003; 42: 1959-1963
  • 3 Maron BJ, Bodison SA, Wesley YE et al. Results of screening a large group of intercollegiate competitive athletes for cardiovascular disease. J Am Coll Cardiol 1987; 10: 1214-1221
  • 4 Maron BJ, Thompson PD, Puffer JC et al. Cardiovascular preparticipation screening of competitive athletes. A statement for health professionals from the sudden death committee (clinical cardiology) and congenital cardiac defects committee (cardiovascular disease in the young), American Heart Association. Circulation 1996; 94: 850-856
  • 5 Corrado D, Basso C, Schiavon M et al. Screening for hypertrophic cardiomyopathy in young athletes. New Engl J Med 1998; 339: 364-369
  • 6 Sandstede J, Lipke C, Beer M et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 2000; 10: 438-442
  • 7 Scharhag J, Schneider G, Urhausen A et al. Athlete's heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 2002; 40: 1856-1863
  • 8 Scharf M, Brem MH, Wilhelm M et al. Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 2010; 257: 71-79
  • 9 Perseghin G, De Cobelli F, Esposito A et al. Effect of the sporting discipline on the right and left ventricular morphology and function of elite male track runners: a magnetic resonance imaging and phosphorus 31 spectroscopy study. Am Heart J 2007; 154: 937-942
  • 10 Petersen SE, Selvanayagam JB, Francis JM et al. Differentiation of athlete’s heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2005; 7: 551-558
  • 11 Grafe MW, Paul GR, Foster TE. The preparticipation sport examination for high school and college athletes. Clin Sports Med 1997; 16: 570-591
  • 12 Glover DW, Maron BJ. Profile of preparticipation cardiovascular screening for high school athletes. JAMA 1998; 279: 1817-1819
  • 13 Pfister GC, Puffer JC, Maron BJ. Preparticipation cardiovascular screening for US collegiate student-athletes. JAMA 2000; 283: 1597-1599
  • 14 Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308-1320
  • 15 Corrado D, Thiene G, Nava A et al. Sudden death in young competitive athletes: clinico-pathologic correlations in 22 cases. Am J Med 1990; 89: 588-596
  • 16 Thiene G, Nava A, Corrado D et al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 1988; 318: 129-133
  • 17 Sofi F, Capalbo A, Pucci N et al. Cardiovascular evaluation, including resting and exercise electrocardiography, before participation in competitive sports: cross sectional study. BMJ 2008; 337: 88-106
  • 18 Prakken NH, Cramer MJ, Olimulder MA et al. Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography. Int J Cardiovasc Imaging 2010; 26: 701-710
  • 19 Mahrholdt H, Wagner A, Judd RM et al. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 2005; 26: 1461-1474
  • 20 Achenbach S, Barkhausen J, Beer M et al. Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Fortschr Röntgenstr 2012; 184: 345-368
  • 21 Hergan K, Globits S, Schuchlenz H et al. Clinical relevance and indications for cardiac magnetic resonance imaging 2013: an interdisciplinary expert statement. Fortschr Röntgenstr 2013; 185: 209-218
  • 22 Luijnenburg SE, Robbers-Visser D, Moelker A et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 2010; 26: 57-64
  • 23 McCrohon JA, Moon JC, Prasad SK et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003; 108: 54-59
  • 24 Tandri H, Daya SK, Nasir K et al. Normal reference values for the adult right ventricle by magnetic resonance imaging. Am J Cardiol 2006; 98: 1660-1664
  • 25 Maceira AM, Prasad SK, Khan M et al. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 2006; 27: 2879-2888
  • 26 Zandrino F, Molinari G, Smeraldi A et al. Magnetic resonance imaging of athlete's heart: myocardial mass, left ventricular function, and cross-sectional area of the coronary arteries. Eur Radiol 2000; 10: 319-325
  • 27 Bischoff P, Radke PW, Barkhausen J et al. The thickened left ventricle: etiology, differential diagnosis and implications for cardiovascular radiology. Fortschr Röntgenstr 2012; 184: 697-705
  • 28 Wilkins CE, Betancourt B, Mathur VS et al. Coronary artery anomalies: a review of more than 10,000 patients from the Clayton Cardiovascular Laboratories. Tex Heart Inst J 1988; 15: 166-173
  • 29 Sanz J. Evolving diagnostic and prognostic imaging of the various cardiomyopathies. Ann N Y Acad Sci 2012; 1254: 123-130
  • 30 Grün S, Schumm J, Greulich S et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 2012; 59: 1604-1615