Rofo 2013; 185(11): 1056-1062
DOI: 10.1055/s-0033-1350110
Thorax
© Georg Thieme Verlag KG Stuttgart · New York

Correlation of the Apparent Diffusion Coefficient (ADC) with the Standardized Uptake Value (SUV) in Hybrid 18F-FDG PET/MRI in Non-Small Cell Lung Cancer (NSCLC) Lesions: Initial Results

Korrelation des scheinbaren Diffusionskeffizienten (ADC) mit dem „standardized uptake values” (SUV) bei nichtkleinzelligen Bronchialkarzinomen (NSCLC) in einem hybriden 18F-FDG-PET/MR
P. Heusch
1   Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany, Univ Dusseldorf, Medical Faculty, Düsseldorf
,
C. Buchbender
1   Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany, Univ Dusseldorf, Medical Faculty, Düsseldorf
,
J. Köhler
2   Department of Medical Oncology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
F. Nensa
3   Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
K. Beiderwellen
3   Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
H. Kühl
3   Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
R. S. Lanzman
1   Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany, Univ Dusseldorf, Medical Faculty, Düsseldorf
,
H. J. Wittsack
1   Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany, Univ Dusseldorf, Medical Faculty, Düsseldorf
,
B. Gomez
4   Department of Nuclear Medicine, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
T. Gauler
2   Department of Medical Oncology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
M. Schuler
2   Department of Medical Oncology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
M. Forsting
3   Department of Diagnostic and Interventional Radiology and Neuroradiology, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
A. Bockisch
4   Department of Nuclear Medicine, D-45147 Essen, Germany, Univ Duisburg-Essen, Medical Faculty, Essen
,
G. Antoch
1   Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany, Univ Dusseldorf, Medical Faculty, Düsseldorf
,
T. A. Heusner
1   Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany, Univ Dusseldorf, Medical Faculty, Düsseldorf
› Author Affiliations
Further Information

Publication History

31 December 2012

02 June 2013

Publication Date:
16 July 2013 (online)

Abstract

Purpose: To compare the apparent diffusion coefficient (ADC) in non-small cell lung cancer lesions with standardized uptake values (SUV) derived from combined 18F-fluoro-deoxy-glucose-positron emission tomography/magnetic resonance imaging (FDG-PET/MRI) and those derived from FDG-PET/CT.

Materials and Methods: In 18 consecutive patients with histologically proven NSCLC (17 men, 1 woman; mean age, 61 ± 12 years), whole-body FDG-PET/MRI was performed after whole-body FDG-PET/CT. Regions of interest (ROI) encompassing the entire primary tumor were drawn into FDG-PET/CT and FDG-PET/MR images to determine the maximum and mean standardized uptake value (SUVmax; SUVmean) and into ADC parameter maps to assess mean ADC values. Pearson’s correlation coefficients were calculated to compare SUV and ADC values.

Results: The SUVmax of NSCLC was 12.3 ± 4.8 [mean ±SD], and the SUVmean was 7.2 ± 2.8 as assessed by FDG-PET/MRI. The SUVmax and SUVmean derived from FDG-PET/CT and FDG-PET/MRI correlated well (R = 0.93; p < 0.001 and R = 0.92; p < 0.001, respectively). The ADCmean of the pulmonary tumors was 187.9 ± 88.8 × 10–5 mm²/s [mean ± SD]. The ADCmean exhibited a significant inverse correlation with the SUVmax (R = –0.72; p < 0.001) as well as with the SUVmean assessed by FDG-PET/MRI (R = –0.71; p < 0.001).

Conclusion: This simultaneous PET/MRI study corroborates the assumed significant inverse correlation between increased metabolic activity on FDG-PET and restricted diffusion on DWI in NSCLC.

Citation Format:

  • Heusch P, Buchbender C, Köhler J et al. Correlation of the Apparent Diffusion Coefficient (ADC) with the Standardized Uptake Value (SUV) in Hybrid 18F-FDG PET/MRI in Non-Small Cell Lung Cancer (NSCLC) Lesions: Initial Results. Fortschr Röntgenstr 2013; 185: 1056 – 1062

Zusammenfassung

Ziel: Vergleich der in der kombinierten 18F-FDG-PET/MR bzw. 18F-FDG-PET/CT ermittelten, scheinbaren Diffusionskoeffizienten (ADC) und der „standardized uptake values” (SUV) bei nichtkleinzelligen Bronchialkarzinomen (NSCLC).

Material und Methoden: Bei 18 konsekutiven Patienten mit histologisch gesichertem NSCLC (17 Männer, 1 Frau, mittleres Alter: 61 ± 12 Jahre) wurde nach einer Ganzkörper-FDG-PET/CT eine Ganzkörper-FDG-PET/MR durchgeführt. Um den maximalen und mittleren SUV (SUVmax; SUVmean) zu bestimmen, wurden die Grenzen des Primärtumors identifiziert und ein „volume of interest“ (VOI) in der FDG-PET/CT und FDG-PET/MR platziert. Eine „region of interest“ (ROI) wurde manuell, den ganzen Tumor umfassend, in die Bilder der diffusionsgewichteten Sequenzen (b = 0) eingezeichnet und anschließend in die Parameterkarten transferiert, um die ADC-Werte zu ermitteln. Um die SUV- und ADC-Werte zu vergleichen, wurde der Pearson Korrelationskoeffizient gebildet.

Ergebnisse: Der SUVmax der NSCLC betrug 12,3 ± 4.8 [Mittelwert ± Standardabweichung], der SUVmean betrug 7,2 ± 2,8, gemessen in der FDG-PET/MR. Die mit Hilfe der FDG-PET/CT und FDG-PET/MR gemessenen SUVmax- und SUVmean-Werte korrelierten jeweils sehr gut (R = 0,93; p < 0,001 und R = 0,92; p < 0,001). Der mittlere ADC (ADCmean) der Lungentumore war 187,9 ± 88.8 × 10–5 mm²/s [Mittelwert ± Standardabweichung]. Der mit Hilfe der FDG-PET/MR gemessene ADCmean wies eine signifikante, inverse Korreltion mit dem SUVmax (R = –0,72; p < 0,001) als auch mit dem SUVmean (R = –0,71; p < 0,001) auf.

Schlussfolgerung: Es besteht sowohl eine exzellente Korrelation zwischen dem SUVmax und SUVmean, ermittelt in der FDG-PET/CT und der darauf folgenden FDG-PET/MR, als auch eine signifikante, inverse Korrealtion zwischen dem SUVmax, dem SUVmean und dem ADCmean, ermittelt mit Hilfe der FDG-PET/MR.

 
  • References

  • 1 Jemal A, Bray F, Center MM et al. Global cancer statistics. CA: a cancer journal for clinicians 2011; 61: 69-90
  • 2 Antoch G, Stattaus J, Nemat AT et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 2003; 229: 526-533
  • 3 Cerfolio RJ, Bryant AS, Ohja B et al. The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 2005; 130: 151-159
  • 4 Regier M, Kandel S, Kaul MG et al. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Euro Radiol 2007; 17: 1341-1351
  • 5 Heusner TA, Kuemmel S, Koeninger A et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging 2010; 37: 1077-1086
  • 6 Wu LM, Gu HY, Zheng J et al. Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. Journal of magnetic resonance imaging: J Magn Reson Imaging 2011; 34: 128-135
  • 7 Eiber M, Holzapfel K, Ganter C et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging 2011; 33: 1160-1170
  • 8 Kim JK, Kim KA, Park BW et al. Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 2008; 28: 714-719
  • 9 Liu Y, Liu H, Bai X et al. Differentiation of metastatic from non-metastatic lymph nodes in patients with uterine cervical cancer using diffusion-weighted imaging. Gynecol Oncol 2011; 122: 19-24
  • 10 Razek AA. Diffusion magnetic resonance imaging of chest tumors. Cancer imaging: the official publication of the International Cancer Imaging Society 2012; 12: 452-463
  • 11 Matoba M, Tonami H, Kondou T et al. Lung carcinoma: diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient. Radiology 2007; 243: 570-577
  • 12 Buchbender C, Heusner TA, Lauenstein TC et al. Oncologic PET/MRI, Part 2: Bone Tumors, Soft-Tissue Tumors, Melanoma, and Lymphoma. J Nucl Med 2012; 53: 1244.52 6
  • 13 Herzog H, Van Den Hoff J. Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging 2012; 56: 247-267
  • 14 Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging?. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S113-S120
  • 15 Drzezga A, Souvatzoglou M, Eiber M et al. First Clinical Experience with Integrated Whole-Body PET/MR: Comparison to PET/CT in Patients with Oncologic Diagnoses. J Nucl Med 2012; 53: 845-855
  • 16 Schwenzer NF, Schraml C, Muller M et al. Pulmonary Lesion Assessment: Comparison of Whole-Body Hybrid MR/PET and PET/CT Imaging--Pilot Study. Radiology 2012; 264: 551-558
  • 17 Schwenzer NF, Pfannenberg C, Reischl G et al. [Application of MR/PET in oncologic imaging]. Fortschr Röntgenstr 2012; 184: 780-787
  • 18 Regier M, Derlin T, Schwarz D et al. Diffusion weighted MRI and 18F-FDG PET/CT in non-small cell lung cancer (NSCLC): does the apparent diffusion coefficient (ADC) correlate with tracer uptake (SUV)?. Euro J Radiol 2012; 81: 2913-2918
  • 19 Buchbender C, Hartung-Knemeyer V, Heusch P et al. Does positron emission tomography data acquisition impact simultaneous diffusion-weighted imaging in a whole-body PET/MRI system?. Eur J Radiol 2013; 82: 380-4
  • 20 Marom EM, Munden RF, Truong MT et al. Interobserver and intraobserver variability of standardized uptake value measurements in non-small-cell lung cancer. J Thorac Imaging 2006; 21: 205-212
  • 21 Heusch P, Buchbender C, Beiderwellen K et al. Standardized uptake values for [(18)F] FDG in normal organ tissues: Comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 2013; 82: 870-876
  • 22 Wiesmüller M, Quick HH, Navalpakkam B et al. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 2013; 40: 12-21
  • 23 Kligerman S, Digumarthy S. Staging of non-small cell lung cancer using integrated PET/CT. Am J Roentgenol 2009; 193: 1203-1211
  • 24 Higashi K, Ueda Y, Arisaka Y et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 2002; 43: 39-45
  • 25 Weber WA, Petersen V, Schmidt B et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003; 21: 2651-2657
  • 26 Huang W, Zhou T, Ma L et al. Standard uptake value and metabolic tumor volume of (1)(8)F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2011; 38: 1628-1635
  • 27 Ohno Y, Koyama H, Yoshikawa T et al. Diffusion-weighted MRI versus 18F-FDG PET/CT: performance as predictors of tumor treatment response and patient survival in patients with non-small cell lung cancer receiving chemoradiotherapy. Am J Roentgenol 2012; 198: 75-82
  • 28 Wu X, Korkola P, Pertovaara H et al. No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma: a PET/CT and DW-MRI study. Euro J Radioly 2011; 79: e117-e121
  • 29 Choi BB, Kim SH, Kang BJ et al. Diffusion-weighted imaging and FDG PET/CT: predicting the prognoses with apparent diffusion coefficient values and maximum standardized uptake values in patients with invasive ductal carcinoma. World J Surg Oncol 2012; 10: 126
  • 30 Wong CS, Gong N, Chu YC et al. Correlation of measurements from diffusion weighted MR imaging and FDG PET/CT in GIST patients: ADC versus SUV. Euro J Radiol 2012; 81: 2122-2126
  • 31 Gu J, Khong PL, Wang S et al. Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: correlation with FDG-PET/CT. Mol Imaging Biol 2011; 13: 1020-1028
  • 32 Nakajo M, Nakajo M, Kajiya Y et al. FDG PET/CT and diffusion-weighted imaging of head and neck squamous cell carcinoma: comparison of prognostic significance between primary tumor standardized uptake value and apparent diffusion coefficient. Clin Nucl Med 2012; 37: 475-480
  • 33 Dale BM, Braithwaite AC, Boll DT et al. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 2010; 45: 104-108
  • 34 Padhani AR, Liu G, Koh DM et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125
  • 35 Kuhnke M, Langner S, Khaw AV et al. Diffusionsgewichtete MRT- wie viele Diffusionsfaktoren sind notwendig?. Fortschr Röntgenstr 2012; 184: 303-310
  • 36 Heusch P, Wittsack HJ, Kröpil P et al. Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging 2013; 37: 233-236
  • 37 Rao RK, Riffel P, Meyer M et al. Implementation of dual-source RF excitation in 3 T MR-scanners allows for nearly identical ADC values compared to 1.5 T MR scanners in the abdomen. PloS one 2012; 7: e32613
  • 38 Heijmen L, Ter VoertEE, Nagtegaal ID et al. Diffusion-weighted MR imaging in liver metastases of colorectal cancer: reproducibility and biological validation. Eur Radiol 2013; 23: 748-756
  • 39 Thoeny HC, Zumstein D, Simon-Zoula S et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 2006; 241: 812-821
  • 40 Malyarenko D, Galbán CJ, Londy FJ et al. Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging 2013; 37: 1238-1246