Rofo 2013; 185(12): 1188-1194
DOI: 10.1055/s-0033-1350106
Technik und Medizinphysik
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative Image Quality Measurements of a Digital Breast Tomosynthesis System

Quantitative Messungen der Bildqualität an einem digitalen Brusttomosynthesesystem
T. Olgar
1   Faculty of Engineering, Department of Engineering Physics, Ankara University, Ankara
,
T. Kahn
2   Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig
,
D. Gosch
2   Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig
› Author Affiliations
Further Information

Publication History

26 November 2012

29 May 2013

Publication Date:
25 July 2013 (online)

Abstract

Purpose: The aim of this study was to measure the image quality of a digital breast tomosynthesis (DBT) system quantitatively.

Materials and Methods: The signal transfer property (STP), modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the Hologic Selenia Dimensions breast tomosynthesis system were measured according to established methods. The NPS was calculated from two-dimensional (2 D) fast Fourier transform (FFT) of flat field images. The presampling MTF of the system was determined for 2 D standard projection mammography and 3 D breast tomosynthesis mode using the edge method. The DQE was derived for different detector air kerma (DAK) values from NPS and MTF measurements.

Results: The detector response function was linear for both two-dimensional (2 D) standard projection mammography and three-dimensional (3 D) breast tomosynthesis modes. The gradient of the detector response in the 3 D imaging mode was higher than the gradient in the 2 D imaging mode by a factor of 3.1. The MTF values measured at the Nyquist frequency were 32 % and 39 % in 2 D and 3 D imaging modes, respectively. The DQE was saturated at an air kerma value approximately 3.5 times lower in 3 D mode than in 2 D mode. The measured maximum DQE value was 54 %.

Conclusion: The measured DQE values were comparable with breast tomosynthesis systems from other companies (Siemens, GE).

Citation Format:

  • Olgar T, Kahn T, Gosch D. Quantitative Image Quality Measurements of a Digital Breast Tomosynthesis System. Fortschr Röntgenstr 2013; 185: 1188 – 1194

Zusammenfassung

Ziel: Das Ziel der Studie war die quantitative Messung der Bildqualität an einem Brusttomosynthesesystem.

Material und Methoden: Die Signalübertragungseigenschaften (STP), die Modulationsübertragungsfunktion (MTF), das Rauschspektrum (NPS) und die detektive Quantenausbeute (DQE) wurden nach etablierten Methoden an einem Brusttomosynthesesystem Selenia Dimensions von Hologic gemessen. Das NPS wurde mittels zweidimensionaler (2-D) schneller Fouriertransformation (FFT) aus Flatfieldbildern berechnet. Die presampling MTF des Systems wurde mittels der Kantenmethode für 2-D-Standardprojektionsaufnahmen und für den 3-D-Brusttomosynthesemodus ermittelt. Die DQE wurde für unterschiedliche Detektordosiswerte (DAK) aus den gemessenen NPS und MTF abgeleitet.

Ergebnisse: Die Detektorresponsfunktion war linear für die 2-D-Standardprojektionsaufnahmen und für den 3-D-Brusttomosynthesemodus. Der Gradient der Detektorrespons im 3-D-Aufnahmemodus war um den Faktor 3,1 höher als im 2-D-Aufnahmebetrieb. Die bei der Nyquist-Frequenz gemessenen MTF-Werte waren 32 % im 2-D-Modus und 39 % im 3-D-Modus. Die Sättigung der DQE im 3-D-Modus erfolgte bei Luftkermawerten, die um den Faktor 3,5 niedriger waren als im 2-D-Modus. Der gemessene maximale DQE-Wert lag bei 54 %.

Schlussfolgerung: Die gemessenen DQE-Werte waren vergleichbar mit denen von Brusttomosynthesesystemen anderer Hersteller (Siemens, GE).

 
  • References

  • 1 Park JM, Franken Jr EA, Garg M et al. Breast Tomosynthesis: Present considerations and future applications. RadioGraphics 2007; 27: 231-240
  • 2 Teertstra HJ, Loo CE, van den Bosch MA et al. Breast tomosynthesis in clinical practice: initial results. Eur Radiol 2010; 20: 16-24
  • 3 Gennaro G, Toledano A, di Maggio C et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol 2010; 20: 1545-1553
  • 4 Olgar T, Kahn T, Gosch D. Average Glandular Dose in Digital Mammography and Breast Tomosynthesis. Fortschr Röntgenstr 2012; 184: 911-918
  • 5 Feng J SS, Sechopoulos I. Clinical Digital Breast Tomosynthesis System: Dosimetric Characterization. Radiology 2012; 263: 35-42
  • 6 Blendl C, Schreiber AC, Buhr H. Results of an Automatic Evaluation of Test Images according to PAS 1054 and IEC 6220-1-2 on Different Types of Digital Mammographic Units. Fortschr Röntgenstr 2009; 181: 979-988
  • 7 Obenauer S, Hermann KP, Schorn C et al. Full-field digital mammography: Dose-dependent detectability of simulated breast lesions. Fortschr Röntgenstr 2000; 172: 1052-1056
  • 8 Schulz-Wendtland R, Wenkel E, Lell M et al Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system. Fortschr Röntgenstr 2006; 178: 1219-1223
  • 9 Samei E. Performance of Digital Radiographic Detectors: Quantification and Assessment Methods. Advances in Digital Radiography. RSNA Categorical Course in Diagnostic Radiology Physics 2003; 37-47
  • 10 IEC (International Electrotechnical Commission). Medical electrical equipment characteristics of digital x-ray imaging devices-part 1.2. Determination of detective quantum efficiency–Detectors used in mammography IEC 62220-1-2. Geneva: International Electrotechnical Commission; 2007
  • 11 Marshall NW, Jacobs J, Cockmartin L et al. Technical evaluation of a digital breast tomosynthesis system. IWDM 2010; , LNCS 6136, 350-356
  • 12 Zhao B, Zhao J, Hu YH et al. Experimental validation of a three-dimensional linear system model for breast tomosynthesis. Med. Phys 2009; 36: 240-251
  • 13 Zhao B, Zhao W. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system. Med Phys 2008; 35: 1978-1987
  • 14 Varjonen M. Three-Dimensional (3D) Digital Breast Tomosynthesis (DBT) in the Early Diagnosis and Detection of Breast Cancer. Doctoral dissertation. 2006. ISBN: 952-15-1584-8 http://URN.fi/URN:NBN:fi:tty-200810021130
  • 15 Bissonnette M, Hansroul M, Masson E et al. Digital breast tomosynthesis using an amorphous selenium flat panel detector. Proc. of SPIE 2005; 5745: 529-540
  • 16 Ren B, Ruth C, Wu T et al. A new generation FFDM/tomosynthesis fusion system with selenium detector. Proc. of SPIE 2010; 7622: 76220B1-76220B11
  • 17 Ren B, Ruth C, Stein J et al. Design and performance analysis of the prototype full field breast tomosynthesis system with selenium based flat panel detector. Proc. of SPIE 2005; 5745: 550-561
  • 18 Marshall NW, Bosmans H. Measurement of system sharpness for two digital breast tomosynthesis systems. Phys Med. Biol 2012; 57: 7629-7650
  • 19 European Commission. European protocol for the quality control of the physical and technical aspects of mammography screening. In: European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edn. EUREF Luxembourg: European Commission; 2006
  • 20 Samei E, Michael J, Flynn MJ et al. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys 1998; 25: 102-113
  • 21 Marshall NW, Monnin P, Bosmans H et al. Image quality assessment in digital mammography: part I. Technical characterization of the systems. Phys Med. Biol 2011; 56: 4201-4220
  • 22 Marshall NW. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems. Phys Med. Biol 2007; 52: 5545-5568
  • 23 Marshall NW. Detective quantum efficiency measured as a function of energy for two full-field digital mammography systems. Phys Med. Biol 2009; 54: 2845-2861
  • 24 NHSBSP (National Health Service Breast Screening Programme). Calculation of quantitative image quality parameters NHSBSP Equipment Report 0902. Sheffield: NHSBSP Publications; 2009
  • 25 Neitzel U, Günther-Kohfahl S, Borasi G et al. Determination of the detective quantum efficiency of a digital x-ray detector: Comparison of three evaluations using a common image data set. Med. Phys 2004; 31: 2205-2211
  • 26 Ayala R, García-Mollá R, Linares R. MIQuaELa, Image Quality Evaluation Laboratory (version 1.0). Madrid, Spain: HGUGM; 2009
  • 27 Ayala R, Linares R, García-Mollá R. MIQuaELa, Software for DQE measuring in digital Radiography/Mammography. IFMBE Proceedings 2009; 25: 825-828
  • 28 Yaffe MJ. Detectors for digital mammography. Bick U, Diekmann F, (Eds.) Digital Mammography. 2010: 220
  • 29 Smith SW. The Scientist and Engineer’s Guide to Digital Signal Processing. California, USA: California Technical Publishing; 2003: 89-91
  • 30 Choi JG, Park HS, Kim YS et al. Characterization of prototype full-field breast tomosynthesis by using a CMOS array coupled with a columnar CsI(Tl) scintillator. Journal of Korean Physical Society 2012; 60: 521-526
  • 31 Choi JG, Kim YS, Park HS et al. Evaluation of the clinical performance by using the effective DQE for a prototype digital breast tomosynthesis system. Journal of Korean Physical Society 2012; 60: 869-874