Horm Metab Res 2013; 45(11): 774-785
DOI: 10.1055/s-0033-1348264
Review
© Georg Thieme Verlag KG Stuttgart · New York

Brown Adipose Tissue: Research Milestones of a Potential Player in Human Energy Balance and Obesity

B. Zafrir
1   Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, and the Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
› Author Affiliations
Further Information

Publication History

received 21 March 2013

accepted 21 May 2013

Publication Date:
26 June 2013 (online)

Abstract

Obesity and diabetes mellitus are worldwide epidemics driven by the disruption in energy balance. In recent years, it was discovered that functional brown adipose tissue (BAT), once thought to exist mainly in infants, is present in adults, and can be detected during cold stimulation, and is associated with decreased adiposity. Brown fat pads were shown to be highly vascularized and metabolically active and on stimulation, they caused enhanced energy expenditure and increased glucose and fatty acid uptake. These observations drew attention to the possibility that nonshivering thermogenesis mediated by activation of BAT might be important in human energy balance and a potential tool to counter obesity. Recent investigations have revealed significant advances in the understanding of the role of BAT-mediated thermogenesis, uncovering essential knowledge on the origin, differentiation, activation, and regulation of BAT in both murine models and humans. In addition to classic BAT depots, transformation of white adipocytes into brown-like adipocytes, and the development of “beige” cells from distinct precursors, were demonstrated in different animal models and resulted in increased thermogenic activity. Several transcription factors, activating proteins, and hormones are increasingly identified as regulating the development and function of both brown-like adipocytes and classic brown fat pads. This review will summarize the evolution of research on BAT in humans, in light of the renewed scientific interest and growing body of evidence showing that recruitment and activation of BAT and browning of white adipose tissue can affect energy expenditure and may be a future feasible target in the treatment of metabolic diseases.

 
  • References

  • 1 World Health Organization. Obesity and overweight fact sheet N311. Updated May 2012. Available at http://www.who.int/mediacentre/factsheets/fs311/en/index.html
  • 2 Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277-359
  • 3 Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010; 303: 235-241
  • 4 Nguyen T, Lau DCW. The Obesity Epidemic and Its Impact on Hypertension. Can J Cardiol 2012; 28: 326-333
  • 5 Bays HE. Adiposopathy. Is “sick fat” a cardiovascular disease?. J Am Coll Cardiol 2011; 57: 2461-2473
  • 6 Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. Energy balance and its components: implications for body weight regulation. J Clin Nutr 2012; 95: 989-994
  • 7 Landsberg L, Young JB, Leonard WE, Linsenmeier RA, Turek FW. Do the obese have lower body temperatures? A new look at a forgotten variable in energy balance. Metabolism 2009; 58: 871-876
  • 8 Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global obesity pandemic: shaped by global drivers and local environments. Lancet 2011; 378: 804-814
  • 9 Swinburn B, Sacks G, Ravussin E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am J Clin Nutr 2009; 90: 1453-1456
  • 10 Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, Martin CK, Blair SN, Bouchard C. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One 2011; 6: e19657
  • 11 Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA. Quantification of the effect of energy imbalance on bodyweight. Lancet 2011; 378: 826-837
  • 12 Kraschnewski JL, Boan J, Esposito J, Sherwood NE, Lehman EB, Kephart DK, Sciamanna CN. Long-term weight loss maintenance in the United States. Int J Obes (Lond) 2010; 34: 1644-1654
  • 13 Redman LM, Heilbronn LK, Martin CK, de Jonge L, Williamson DA, Delany JP, Ravussin E. ; Pennington CALERIE Team . Metabolic and behavioral compensations in response to caloric restriction: implication for the maintenance of weight loss. PLoS One 2009; 4: e4377
  • 14 Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation 2012; 126: 126-132
  • 15 Johnson F, Mavrogianni A, Ucci M, Vidal-Puig A, Wardle J. Could increased time spent in a thermal comfort zone contribute to population increases in obesity?. Obesity Rev 2011; 12: 543-551
  • 16 Goodpaster BH, Delany JP, Otto AD, Kuller L, Vockley J, South-Paul JE, Thomas SB, Brown J, McTigue K, Hames KC, Lang W, Jakicic JM. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 2010; 304: 1795-1802
  • 17 Katan MB, Ludwig DS. Extra calories cause weight gain – but how much?. JAMA 2010; 303: 65-66
  • 18 Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, Ahlin S, Anveden Å, Bengtsson C, Bergmark G, Bouchard C, Carlsson B, Dahlgren S, Karlsson J, Lindroos AK, Lönroth H, Narbro K, Näslund I, Olbers T, Svensson PA, Carlsson LM. Bariatric surgery and long-term cardiovascular events. JAMA 2012; 307: 56-65
  • 19 Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 2012; 366: 1577-1585
  • 20 Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012; 366: 1567-1576
  • 21 Kozak LP, Koza RA, Anunciado-koza R. Brown fat thermogenesis and body weight regulation in mice: relevance to humans. Int J Obesity 2010; 34: S23-S27
  • 22 Himms-Hagen J. Obesity may be due to a malfunctioning of brown fat. Can Med Assoc J 1979; 21: 1361-1364
  • 23 Heaton JM. The distribution of brown adipose tissue in the human. J Anat 1972; 112: 35-39
  • 24 Huttunen P, Hirvonen J, Kinnula V. The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol 1981; 46: 339-345
  • 25 Lean ME, James WP, Jennings G, Trayhurn P. Brown adipose tissue in patients with pheochromocytoma. Int J Obes 1986; 10: 219-227
  • 26 Kuji I, Imabayashi E, Minagawa A, Matsuda H, Miyauchi T. Brown adipose tissue demonstrating intense FDG uptake in a patient with a mediastinal pheochromocytoma. Ann Nucl Med 2008; 22: 231-235
  • 27 Wang Q, Zhang M, Ning G, Gu W, Su T, Xu M, Li B, Wang W. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS One 2011; 6: e21006
  • 28 Engel H, Steinert H, Buck A, Berthold T, Huch Boni RA, von Schulthess GK. Whole Body PET: Physiological and artifactual fluoro-deoxyglucose accumulations. J Nucl Med 1996; 37: 441-446
  • 29 Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 2002; 29: 1393-1398
  • 30 Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavivular area fat (“USA fat”) description on 18F-FDG PET/CT. J Nucl Med 2003; 44: 170-176
  • 31 Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of 18(F)-FDG uptake in adipose tissue and muscle; a potential source of false positives for PET. J Nucl Med 2003; 44: 1789-1796
  • 32 Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444-E452
  • 33 Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509-1517
  • 34 Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500-1508
  • 35 Saito M, Okmatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526-1531
  • 36 Zingaretti MO, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Needergard J, Cinti S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23: 3113-3120
  • 37 Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-1525
  • 38 Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerback S, Virtanen KA. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 2011; 14: 272-279
  • 39 Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, Saito M. Brown adipose tissue, whole-body expenditure, and thermogenesis in healthy adult men. Obesity 2011; 19: 13-16
  • 40 Quellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, Turcotte EE, Richard D, Carpenter AC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122: 545-552
  • 41 Muzik O, Mangner TJ, Granneman JG. Assesment of oxidative metabolism in brown fat using PET imaging. Front Endocrinol (Lausanne) 2012; 15: 1-7
  • 42 Chen YI, Cypess AM, Sass CA, Brownell AL, Jokivarsi KT, Kahn CR, Kwong KK. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity (Silver Spring) 2012; 20: 1519-1526
  • 43 Lee P, Ho KK, Lee P, Greenfield JR, Ho KK, Greenfield JR. Hot fat in a cool man: infrared thermography and brown adipose tissue. Diabetes Obes Metab 2011; 13: 92-93
  • 44 Madar I, Isoda T, Finley P, Angle J, Wahl R. 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis. J Nucl Med 2011; 52: 808-814
  • 45 Benchman ES, Dhilon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297: 843-845
  • 46 Feldman HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009; 9: 203-209
  • 47 Vijgen GHEJ, Bouvy ND, Teule GJJ, Brans B, Schrauwen P, Lichtenbelt WDVM. Brown adipose tissue in morbid obese subjects. PloS One 2011; 6: e17247
  • 48 Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 2011; 19: 1755-1760
  • 49 Vijgen GHEJ, Bouvy ND, Teule GJJ, Brans B, Hoeks J, Schrauwen P, Lichtenbelt WDVM. Increase in brown adipose tissue activity after weight loss in morbid obese subjects. J Clin Endocrinol Metab 2012; 97: 1229-1233
  • 50 Lecoultre V, Ravussin E. Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care 2011; 14: 1-6
  • 51 Lee P, Geenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2010; 299: E601-E606
  • 52 Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimond M, Haring HU, Claussen CD, Stefan N. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 2010; 59: 1789-1793
  • 53 Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes 2010; 58: 2583-2587
  • 54 Rodriguez-Cuenca S, Pujol E, Justo R, Frontera M, Oliver J, Gianotti M, Roca P. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 2002; 277: 42958-42963
  • 55 Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, Drubach LA. Seasonal variation in the effect of constant ambient temperature of 24 degrees C in reducing FDG uptake by brown adipose tissue in children. Eur J Nucl Med Mol Imaging 2010; 37: 1854-1860
  • 56 Hyuang YC, Hsu CC, Wang PW, Chang YH, Chen Tb, Lee FB, Chiu NT. Review analysis of the association between the prevalence of activated BAT and outdoor temperature. Scientific World Journal 2012; 2012: 793039
  • 57 Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergarrd J, Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cells lineages. Proc Natl Acad Sci USA 2007; 104: 4401-4406
  • 58 Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961-967
  • 59 Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic PPARgamma activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competenet, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2009; 285: 7153-7164
  • 60 Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte development and physiological function – of mice and men. Genes Dev 2009; 23: 788-797
  • 61 Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann Med 2011; 43: 104-115
  • 62 Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2010; 285: 7153-7164
  • 63 Wu J, Bostrom P, Sparks LM, Ye L, Choi Hyun J, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige Adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366-376
  • 64 Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 2012; 7: e49452
  • 65 Crisan M, Casteilla L, Lehr L, Carmona M, Paoloni-Giacobino A, Yap S, Sun B, Leger B, Logar A, Pénicaud L, Schrauwen P, Cameron-Smith D, Russell AP, Péault B, Giacobino JP. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 2008; 26: 2425-2433
  • 66 Pisani DF, Djedaini M, Beranger GE, Elabd C, Scheideler M, Ailhaud G, Amri EZ. Differentiation of Human Adipose-Derived Stem Cells into “Brite” (Brown-in-White) Adipocytes. Front Endocrinol (Lausanne) 2011; 2: 87
  • 67 Ahfeldt T, Schinzel RT, Lee YK, Hendrickson D, Kaplan A, Lum DH, Camahort R, Xia F, Shay J, Rhee EP, Clish CB, Deo RC, Shen T, Lau FH, Cowley A, Mowrer G, Al-Siddiqi H, Nahrendorf M, Musunuru K, Gerszten RE, Rinn JL, Cowan CA. Programing human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 2012; 14: 209-219
  • 68 Nishio M, Yoneshiro T, Nakahara M, Suzuki S, Saeki K, Hasegawa M, Kawai Y, Akutsu H, Umezawa A, Yasuda K, Tobe K, Yuo A, Kubota K, Saito M, Saeki K. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab 2012; 16: 394-406
  • 69 Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 2012; 61: 674-682
  • 70 Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 2013; 123: 215-223
  • 71 Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WH, Astrup A. Effect of a 28-d treatment with L-796568, a novel beta(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 2002; 76: 780-788
  • 72 Redman LM, de Jonge L, Fang X, Gamlin B, Recker D, Greenway FL, Smith SR, Ravussin E. Lack of an effect of a novel beta3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: A double-blind, placebo-controlled randomized study. J Clin Endocrinol Metab 2007; 92: 527-531
  • 73 Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR, Kolodny GM, Kahn CR. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci USA 2012; 109: 10001-10005
  • 74 Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, Kalff V, Duffy SJ, Cherk MH, Kingwell BA. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 2013; 56: 147-155
  • 75 Arruda AP, Milanski M, Velloso LA. Hypothalamic inflammation and thermogenesis: the brown adipose tissue connecetion. J Bioenerg Biomembr 2011; 43: 53-58
  • 76 Whittle AJ, Lopez M, Vidal-Puig A. Using brown adipose tissue to treat obesity – the central issue. Trends Mol Med 2011; 17: 405-411
  • 77 López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, Martínez de Morentin PB, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Diéguez C, Vidal-Puig A. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 2010; 16: 1001-1008
  • 78 Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-indued thermogenesis. Obes Res 1997; 5: 650-656
  • 79 Fromme T, Klingenspor M. Uncoupling protein 1 expression and high-fat diets. Am J Physiol Regul Integr Comp Physiol 2011; 300: R1-R8
  • 80 Kozak LP. Brown fat and the myth of diet induced thermogenesis. Cell Metab 2010; 11: 263-267
  • 81 Wijers SL, Saris WH, van Marken Linchtenbelt WD. Individual thermogenic responses to mild cold and overfeeding are closely related. J Clin Endocrinol Metab 2007; 92: 4299-4305
  • 82 Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, Tzan K, Wang A, Parthasarathy S, He G, Rajagopalan S, Sun Q. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 2011; 300: R1115-R1125
  • 83 De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, Cinti S, Cuppini R. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 2012; [Epub ahead of print]
  • 84 Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481: 463-468
  • 85 Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLos Biol 2005; 3: e101
  • 86 Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 2006; 3: 333-341
  • 87 Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI, Spiegelman BM. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc Natl Acad Sci USA 2012; 109: 9635-9640
  • 88 Hondares E, Rosell M, Díaz-Delfín J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 2011; 286: 43112-43122
  • 89 Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008; 454: 1000-1004
  • 90 Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S, Dale M, Virtue S, Villarroya F, Cannon B, Rahmouni K, López M, Vidal-Puig A. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012; 149: 871-875
  • 91 Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown-fat paucity due to impaired BMP signaling induces compensatory browning of white fat. Nature 2013; 495: 379-383
  • 92 Cederberg A, Grønning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 2001; 106: 563-573
  • 93 Lidell ME, Seifert EL, Westergren R, Heglind M, Gowing A, Sukonina V, Arani Z, Itkonen P, Wallin S, Westberg F, Fernandez-Rodriguez J, Laakso M, Nilsson T, Peng XR, Harper ME, Enerbäck S. The adipocyte-expressed forkhead transcription factor Foxc2 regulates metabolism through altered mitochondrial function. Diabetes 2011; 60: 427-435
  • 94 Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149: 6018-6027
  • 95 Hondares E, Iglesia R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286: 12983-12990
  • 96 Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26: 271-281
  • 97 Asano A, Morimatsu M, Nikami H, Yoshida T, Saito M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis. Biochem J 1997; 328: 179-183
  • 98 Elias I, Franckhauser S, Ferré T, Vilà L, Tafuro S, Muñoz S, Roca C, Ramos D, Pujol A, Riu E, Ruberte J, Bosch F. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 2012; 61: 1801-1813
  • 99 Lu X, Ji Y, Zhang L, Zhang Y, Zhang S, An Y, Liu P, Zheng Y. Resistance to Obesity by Repression of VEGF Gene Expression through Induction of Brown-Like Adipocyte Differentiation. Endocrinology 2012; 153: 3123-3132
  • 100 Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R, Araujo P, Mercader J, Bonet ML, Hansen JB, Cannon B, Nedergaard J, Wang J, Cinti S, Voshol P, Døskeland SO, Kristiansen K. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 2010; 5: e11391
  • 101 Vegiopoulos A, Müller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nüsing RM, Meyer CW, Wahli W, Klingenspor M, Herzig S. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 2010; 328: 1158-1161
  • 102 Trayhurn P, Drevon CA, Eckel J. Secreted proteins from adipose tissue and skeletal muscle – adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem 2011; 117: 47-56
  • 103 Rhee EJ, Plutzky J. Retinoid metabolism and diabetes mellitus. Diabetes Metab J 2012; 36: 167-180
  • 104 Kiefer FW, Vernochet C, O’Brien P, Spoerl S, Brown JD, Nallamshetty S, Zeyda M, Stulnig TM, Cohen DE, Kahn CR, Plutzky J. Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med 2012; 18: 918-925
  • 105 Shapiro H, Lutaty A, Ariel A. Macrophages, meta-inflammation, and immuno-metabolism. Sci World J 2011; 11: 2509-2529
  • 106 Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2011; 480: 104-108
  • 107 Wang TJ. The natriuretic peptides and fat metabolism. N Engl J Med 2012; 367: 377-378
  • 108 Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; 122: 1022-1036
  • 109 Whittle AJ, Vidal-Puig A. NPs – heart hormones that regulate brown fat?. J Clin Invest 2012; 122: 804-807
  • 110 Iacobellis G, Malavazos AE, Cordi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol 2011; 43: 1051-1054
  • 111 Iacobellis G, Lonn E, Lamy A, Singh N, Sharma AM. Epicardial fat thickness and CAD correlate independently of obesity. Int J Cardiol 2011; 146: 452-454
  • 112 De Vos AM, Prokop M, Roos CJ, Meijs MFL, Van der Schouw YT, Rutten A, Gorter PM, Cramer MJ, Doevendans PA, Rensing BJ, Bartelink ML, Velthuis BK, Mosterd A, Bots ML. Peri-coronary epicardial adipose tissue is related to cardiovascular risk factors and coronary artery calcification in post-menopausal women. Eur Heart J 2008; 29: 777-783
  • 113 Iacobellis G, Singh N, Wharton S, Sharma AM. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 2008; 16: 1693-1697
  • 114 Kim MK, Tomita T, Kim MJ, Sasai H, Maeda S, Tanaka K. Aerobic exercise training reduces epicardial fat in obese men. J Appl Physiol 2009; 106: 5-11
  • 115 Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, Karas J, Optican R, Bahouth SW, Garrett E, Wolf RY, Carter RA, Robbins T, Wolford D, Samaha J. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: Epicardial fat functioning as brown fat. J Clin Endocrinol Metab 2009; 94: 3611-3615
  • 116 Chechi K, Blanchard PG, Mathieu P, Deshaies Y, Richards D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int J Cardiol 2012; [Epub ahead of print]
  • 117 Williams KJ, Fisher EA. Globular warming: how fat gets the furnace. Nat Med 2011; 17: 157-159
  • 118 Bartlet A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmüller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17: 200-205
  • 119 Bartlet A, Merkel M, Heeren J. A new, powerful player in lipoprotein metabolism: brown adipose tissue. J Mol Med 2012; 90: 887-893