Facial Plast Surg 2013; 29(02): 085-092
DOI: 10.1055/s-0033-1341590
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Concept of Rhinorespiratory Homeostasis—A New Approach to Nasal Breathing

Thomas Hildebrandt
1   Private practice of otorhinolaryngology in association with the Limmatklinik, Zurich, Switzerland
,
Werner Johannes Heppt
2   Department of Otorhinolaryngology, Head and Neck Surgery, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
,
Ulrich Kertzscher
3   Biofluid Mechanics Lab, Institute of Laboratory Medicine, Charité, Berlin, Germany
,
Leonid Goubergrits
3   Biofluid Mechanics Lab, Institute of Laboratory Medicine, Charité, Berlin, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
05 April 2013 (online)

Abstract

The suggested concept of rhinorespiratory homeostasis is a new theoretical model for the discussion of physiologic and physical principles of nasal breathing. This model is based on a comprehensive view of nasal functions that takes comparative animal physiology into account. Consequently, it has a universal cross-species character and emphasizes the central role of nasal secretion. In contrast to the established view, the focus is transferred from the inspired air to the nasal wall. This concept considers the parietal effect of airflow represented by wall shear stress with special regard to the epithelial lining fluid. It delivers one possible mechanism of an inherent triggering of the nasal cycle. Furthermore, the issue of biological fluid–structure interaction is introduced. This article presents a rethinking of nasal breathing that was inspired by clinical experience and results of flow field investigations through computational fluid dynamics.

 
  • References

  • 1 Scott JH. The comparative anatomy and function of the maxillary turbinate. J Anat 1953; 87: 461-462
  • 2 Scott JH. Heat regulation function of the nasal mucous membrane. J Laryngol 1954; 68: 56-59
  • 3 Rolfes H. Untersuchungen zur Klimatisierungsfunktion der Nase [PhD dissertation]. Berlin, Germany: Freie Universität; 1998
  • 4 Cramer II. Heat and moisture exchange of respiratory mucous membrane. Ann Otol Rhinol Laryngol 1957; 66: 327-343
  • 5 Negus V. Further observations on the air conditioning mechanism of the nose. Ann R Coll Surg Engl 1960; 27: 171-204
  • 6 Hillenius WJ. The Evolution of Nasal Turbinates and Mammalian Endothermy. Paleobiology 1992; 18: 17-29
  • 7 Proctor DF. Form and function in the upper airways and larynx. In: Fishman AP, , ed. The Handbook of Physiology. Section 3: The Respiratory System. Volume 3. Mechanics of Breathing, Part 1. Baltimore, MD: The American Physiological Society; 1986: 63-73
  • 8 Schmidt-Nielsen K. Physiologie der Tiere. Heidelberg, Germany: Spektrum Akademischer Verlag GmbH; 1999: 234-235 , 289–292
  • 9 Schmidt-Nielsen K, Bretz WL, Taylor CR. Panting in dogs: unidirectional air flow over evaporative surfaces. Science 1970; 169: 1102-1104
  • 10 Blatt CM, Taylor CR, Habal MB. Thermal panting in dogs: the lateral nasal gland, a source of water for evaporative cooling. Science 1972; 177: 804-805
  • 11 Herberhold C. Comment to Fischer R. Physikalische Modelle zur Nachbildung der physiologischen Funktion der Nase bei der Klimatisierung der Inspirationsluft. Archiv klein exp. Ohren-, Nasen- und Kehlkopfheilk, Bd 202, Heft 2. Kongreßbericht 1972; 1972: 2 Teil
  • 12 Koch D, Arnold S, Hubler M, Montavon PM. Brachycephalic syndrome in dogs. 2003 25. 48-55 . Available at: http://www.vetlearn.com
  • 13 Oechtering G. Das Brachyzephalensyndrom-Neue Informationen zu einer alten Erbkrankheit. Veterinary Focus 2010; 20: 1-9
  • 14 Hochstrasser K. Physiologische Chemie und Pathobiochemie der Nasenschleimhaut. In: Oto-Rhino-Laryngologie in Klinik und Praxis: Nase, Nasennebenhöhlen, Gesicht, Mundhöhle und Pharynx, Kopfspeicheldrüsen Band 2. Stuttgart, Germany: Georg Thieme Verlag; 1992: 60-65
  • 15 Drettner B. Physiologie und Pathphysiologie der Nase. In: Oto-Rhino-Laryngologie in Klinik und Praxis: Nase, Nasennebenhöhlen, Gesicht, Mundhöhle und Pharynx, Kopfspeicheldrüsen Band 2. Stuttgart, Germany: Georg Thieme Verlag; 1992: 40-48
  • 16 Behrbohm H. Untersuchungen zur Physiologie und zum Reparationsverhalten der Kieferhöhlenschleimhaut [Habilitation]. Berlin, Germany: Humboldt-Universität; 1990
  • 17 Behbehani AA. Das Sekret der respiratorischen Schleimhaut: Ein spezieller Flüssigkeitsraum [Habilitation]. München, Germany: Universität München; 1983
  • 18 Kersting U, Schwab A, Hebestreit A. Measurement of human nasal potential difference to teach the theory of transepithelial fluid transport. Adv Physiol Educ 1998; 275: 72-77
  • 19 Rokahr C. Nasale Potenzialdifferenzmessung in Therapie und Diagnostik der Cystischen Fibrose [PhD dissertation]. Hannover, Germany: Medizinische Hochschule; 2006
  • 20 Deetjen S, Hescheler. Transepitheliales Potenzial der Nasenschleimhaut. In: Speckmann E-J, Hescheler J, Köhling R. , eds. Physiologie. München, Germany: Elsevier, Urban & Fischer; 2004: 5-14
  • 21 Krahl AJA. Nasale Potentialdifferenzmessung: Zum Einfluß von körperlicher Belastung, Kaltluftexposition und Amiloridpulver [PhD dissertation]. Giessen, Germany: Justus-Liebig- Universität; 2002
  • 22 Mairbäurl H, Weymann J, Möhrlein A , et al. Nasal epithelium potential difference at high altitude (4,559 m): evidence for secretion. Am J Respir Crit Care Med 2003; 167: 862-867
  • 23 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol 2006; 100: 1003-1010
  • 24 Even-Tzur N, Kloog Y, Wolf M, Elad D. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 2008; 95: 2998-3008
  • 25 Baumann C. Genexpression von Endothelzellen unter Wandschubspannung [PhD dissertation]. Berlin, Germany: Freie Universität; 2002
  • 26 Bongrazio M. Wandschubspannungsregulierte Expression von Proteinen der Thrombospondin type-1 Repeat (TSR) Familie in Endothelzellen [PhD dissertation]. Berlin, Germany: Freie Universität; 2004
  • 27 Schmidt VJ. Die Koordination des Gefäßverhaltens in der Mikorzirkulation wird durch Connexine mit spezifischen Eigenschaften vermittelt [PhD dissertation]. Lübeck, Germany: Universität zu Lübeck; 2008
  • 28 Schmidt RF, Lang F. Physiologie des Menschen: mit Pathophysiologie. 30. Auflage. Heidelberg, Germany: Springer Medizin Verlag; 2007: 652-654
  • 29 Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75: 519-560
  • 30 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol 2006; 100: 1003-1010
  • 31 Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B. Numerical model of a nasal septal perforation. Medinfo 2004;
  • 32 Doorly DJ, Taylor DJ, Gambaruto AM, Schroter RC, Tolley N. Nasal architecture: form and flow. Philos Transact A Math Phys Eng Sci 2008; 366: 3225-3246
  • 33 Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 2008; 163: 100-110
  • 34 Bailie N, Hanna B, Watterson J, Gallagher G. A model of airflow in the nasal cavities: Implications for nasal air conditioning and epistaxis. Am J Rhinol Allergy 2009; 23: 244-249
  • 35 Even-Tzur N, Kloog Y, Wolf M, Elad D. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 2008; 95: 2998-3008
  • 36 Chambers LA, Rollins BM, Tarran R. Liquid movement across the surface epithelium of large airways. Respir Physiol Neurobiol 2007; 159: 256-270
  • 37 Tarran R, Button B, Picher M , et al. Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 2005; 280: 35751-35759
  • 38 Fiedler G. Retrospektive Analyse sinunasaler Erkrankungen bei 104 Patienten nach Laryngektomie [PhD dissertation]. Marburg, Germany: Phillips-Universität; 2008
  • 39 Naclerio RM, Bachert C, Baraniuk JN. Pathophysiology of nasal congestion. Int J Gen Med 2010; 3: 47-57
  • 40 Freund W, Wunderlich AP, Stöcker T, Schmitz BL, Scheithauer MO. Empty nose syndrome: limbic system activation observed by functional magnetic resonance imaging. Laryngoscope 2011; 121: 2019-2025
  • 41 Chhabra N, Houser SM. The diagnosis and management of empty nose syndrome. Otolaryngol Clin North Am 2009; 42: 311-330 , ix
  • 42 Huizing EH, De Groot JAM. Functional Reconstructive Nasal Surgery. 1st ed. Stuttgart, Germany: Georg Thieme Verlag; 2003: 52
  • 43 Lung MA, Wang JCC. Autonomic nervous control of nasal vasculature and airflow resistance in the anaesthetized dog. J Physiol 1989; 419: 121-139
  • 44 Eccles R. Sympathetic control of nasal erectile tissue. Eur J Respir Dis Suppl 1983; 128 (Pt 1) 150-154
  • 45 Mirza N, Kroger H, Doty RL. Influence of age on the “nasal cycle.”. Laryngoscope 1997; 107: 62-66
  • 46 Eccles R. The central rhythm of the nasal cycle. Acta Otolaryngol 1978; 86: 464-468
  • 47 Kantchew-Haustein BA. Quantifizierung des menschlichen Nasenzyklus in Beziehung zum Geruchsvermögen [PhD dissertation]. Dresden, Germany: Technische Universität; 2009
  • 48 Maurizi M, Paludetti G, Almadori G, Ottaviani F, Todisco T. Mucociliary clearance and mucosal surface characteristics before and after total laryngectomy. Acta Otolaryngol 1986; 102: 136-145
  • 49 Havas TE, Cole P, Gullane P, Kassel R. Alterations in nasal physiology after laryngectomy: the nasal cycle. J Otolaryngol 1987; 16: 149-153
  • 50 Fisher EW, Liu M, Lund VJ. The nasal cycle after deprivation of airflow: a study of laryngectomy patients using acoustic rhinometry. Acta Otolaryngol 1994; 114: 443-446
  • 51 Hildebrandt T. Das Konzept der Rhinorespiratorischen Homöostase—ein neuer theoretischer Ansatz für die Diskussion physiologischer und physikalischer Zusammenhänge bei der Nasenatmung [PhD dissertation]. Freiburg im Breisgau, Germany: Albert-Ludwigs-Universität; 2011