Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2014; 46(14): 1924-1932
DOI: 10.1055/s-0033-1341267
DOI: 10.1055/s-0033-1341267
special topic
Three-Component Carboboration of Alkenes under Copper Catalysis
Further Information
Publication History
Received: 28 February 2014
Accepted after revision: 01 April 2014
Publication Date:
14 May 2014 (online)
Abstract
Three-component carboboration of alkenes takes place efficiently by the reaction with a diboron compound and carbon electrophiles with the aid of a copper–NHC catalyst. The carboboration afforded diverse multisubstituted borylalkanes via the regioselective formation of carbon–boron and carbon–carbon bonds.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000084.
- Supporting Information
-
References
- 1 Boronic Acids . Hall DG. Wiley-VCH; Weinheim: 2011
- 3a Petasis NA, Goodman A, Zavialov IA. Tetrahedron 1997; 53: 16463
- 3b Koolmeister T, Södergren M, Scobie M. Tetrahedron Lett. 2002; 43: 5965
- 4a Ito H, Yamanaka H, Tateiwa J, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
- 4b Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
- 4c Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
- 4d Ito H, Sasaki Y, Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
- 4e Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2008; 47: 145
- 4f Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
- 4g Lee J.-E, Kwon J, Yun J. Chem. Commun. 2008; 733
-
4h Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
-
4i Lee Y, Jang H, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 18234
-
4j Lillo V, Prieto A, Bonet A, Díaz-Requejo MM, Ramírez J, Pérez PJ, Fernández E. Organometallics 2009; 28: 659
- 4k Sasaki Y, Zhong C, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 1226
- 4l Ito H, Toyoda T, Sawamura M. J. Am. Chem. Soc. 2010; 132: 5990
- 4m Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
- 4n Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
-
4o Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
- 4p Kobayashi S, Xu P, Endo T, Ueno M, Kitanosono T. Angew. Chem. Int. Ed. 2012; 51: 12763
- 4q Semba K, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2013; 52: 12400
- 4r Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2013; 135: 2635
- 4s Yun J. Asian J. Org. Chem. 2013; 2: 1016
- 5a Yoshida H, Kawashima S, Takemoto Y, Okada K, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2012; 51: 235
- 5b Takemoto Y, Yoshida H, Takaki K. Chem. Eur. J. 2012; 18: 14841
-
6a Laitar DS, Müller P, Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
- 6b Segawa Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2007; 46: 6710
-
7a Suginome M, Yamamoto A, Murakami M. J. Am. Chem. Soc. 2003; 125: 6358
- 7b Suginome M, Yamamoto A, Murakami M. Angew. Chem. Int. Ed. 2005; 44: 2380
- 7c Suginome M, Yamamoto A, Murakami M. J. Organomet. Chem. 2005; 690: 5300
- 7d Suginome M, Shirakura M, Yamamoto A. J. Am. Chem. Soc. 2006; 128: 14438
- 7e Suginome M, Yamamoto A, Sasaki T, Murakami M. Organometallics 2006; 25: 2911
- 8a Yamamoto A, Suginome M. J. Am. Chem. Soc. 2005; 127: 15706
-
8b Daini M, Yamamoto A, Suginome M. J. Am. Chem. Soc. 2008; 130: 2918
- 8c Daini M, Suginome M. Chem. Commun. 2008; 5224
- 8d Daini M, Yamamoto A, Suginome M. Asian J. Org. Chem. 2013; 2: 968
- 9a Mikhaikov BM, Bubnov YN. Tetrahedron Lett. 1971; 12: 2127
- 9b Bubnov YN, Nesmeyanova OA, Rudashevskaya TY, Mikhaikov BM, Kazansky BA. Tetrahedron Lett. 1971; 12: 2153
- 9c Wrackmeyer B, Nöth H. J. Organomet. Chem. 1976; 108: C21
- 9d Okuno Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2011; 50: 920
- 10a Alfaro R, Parra A, Alemeán JG, Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
-
10b Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
-
10c Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
-
11 For our previous work on copper-catalyzed carboboration of alkynes, see: Yoshida H, Kageyuki I, Ken T. Org. Lett. 2013; 15: 952
-
12a Laitar DS, Tsui EY, Sadighi JP. Organometallics 2006; 25: 2405
- 12b Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
- 12c Sakaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
- 12d Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
- 13 For Pd-catalyzed carboboration of alkenes, see: Daini M, Suginome M. J. Am. Chem. Soc. 2011; 133: 4758
- 14 Copper(II) acetate would be reduced to a copper(I) complex in situ, see: Hammond B, Jardine FH, Vohra AG. J. Inorg. Nucl. Chem. 1971; 33: 1017
- 15 A major byproduct was benzylboronic acid pinacol ester.
- 16 The stereochemistry of the major products could not be elucidated.
- 17 For a review on radical clock reactions, see: Griller D, Ingold KU. Acc. Chem. Res. 1980; 13: 317
- 18a Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2007; 47: 145
-
18b Corberán R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
- 19 Another catalytic pathway, which involves direct reaction of 6 with a carbon electrophile, may also be possible, see ref. 10a
- 20a Chang YC, Nair MG, Nitiss JL. J. Nat. Prod. 1995; 58: 1901
- 20b Setchell KD. R, Brown NM, Lydeking-Olse E. J. Nutr. 2002; 132: 3577
- 20c Ingram D, Sanders K, Kolybaba M, Lopez D. Lancet 1997; 350: 990
- 20d Lamartiniere CA. Am. J. Clin. Nutr. 2000; 71: 1705
- 20e Adlercreutz H, Honjo H, Higashi A. Am. J. Clin. Nutr. 1991; 54: 1093
- 20f Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, Katzenellenbogen JA. Bioorg. Med. Chem. 2004; 12: 1559
- 21a Heemstra JM, Kerrigan SA, Doerge DR, Helferich WG, Boulanger WA. Org. Lett. 2006; 8: 5441
- 21b Gharpure SJ, Sathiyanarayanan AM, Jonnalagadda P. Tetrahedron Lett. 2008; 49: 2974
For examples, see:
For catalytic carboboration via direct activation of a B–C bond, see:
For three-component carboboration with a boron electrophile and a carbon nucleophile, see:
For carboboration of other modes, see:
For copper-catalyzed carboboration of alkynes, see:
For hydroboration of alkenes via a β-borylalkyl copper species, see:
For the previous reports on total synthesis of equol, see: