Synthesis 2014; 46(14): 1924-1932
DOI: 10.1055/s-0033-1341267
special topic
© Georg Thieme Verlag Stuttgart · New York

Three-Component Carboboration of Alkenes under Copper Catalysis

Ikuo Kageyuki
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan   Fax: +81(82)4245494   Email: yhiroto@hiroshima-u.ac.jp
,
Hiroto Yoshida*
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan   Fax: +81(82)4245494   Email: yhiroto@hiroshima-u.ac.jp
,
Ken Takaki
Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan   Fax: +81(82)4245494   Email: yhiroto@hiroshima-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 28 February 2014

Accepted after revision: 01 April 2014

Publication Date:
14 May 2014 (online)


Abstract

Three-component carboboration of alkenes takes place efficiently by the reaction with a diboron compound and carbon electrophiles with the aid of a copper–NHC catalyst. The carboboration afforded diverse multisubstituted borylalkanes via the regio­selective formation of carbon–boron and carbon–carbon bonds.

Supporting Information

 
  • References

  • 1 Boronic Acids . Hall DG. Wiley-VCH; Weinheim: 2011
    • 2a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 2b Miyaura N. Top. Curr. Chem. 2002; 219: 11
    • 3a Petasis NA, Goodman A, Zavialov IA. Tetrahedron 1997; 53: 16463
    • 3b Koolmeister T, Södergren M, Scobie M. Tetrahedron Lett. 2002; 43: 5965

      For examples, see:
    • 4a Ito H, Yamanaka H, Tateiwa J, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
    • 4b Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
    • 4c Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 4d Ito H, Sasaki Y, Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
    • 4e Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2008; 47: 145
    • 4f Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
    • 4g Lee J.-E, Kwon J, Yun J. Chem. Commun. 2008; 733
    • 4h Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
    • 4i Lee Y, Jang H, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 18234
    • 4j Lillo V, Prieto A, Bonet A, Díaz-Requejo MM, Ramírez J, Pérez PJ, Fernández E. Organometallics 2009; 28: 659
    • 4k Sasaki Y, Zhong C, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 1226
    • 4l Ito H, Toyoda T, Sawamura M. J. Am. Chem. Soc. 2010; 132: 5990
    • 4m Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
    • 4n Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
    • 4o Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
    • 4p Kobayashi S, Xu P, Endo T, Ueno M, Kitanosono T. Angew. Chem. Int. Ed. 2012; 51: 12763
    • 4q Semba K, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2013; 52: 12400
    • 4r Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2013; 135: 2635
    • 4s Yun J. Asian J. Org. Chem. 2013; 2: 1016
    • 5a Yoshida H, Kawashima S, Takemoto Y, Okada K, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2012; 51: 235
    • 5b Takemoto Y, Yoshida H, Takaki K. Chem. Eur. J. 2012; 18: 14841
    • 6a Laitar DS, Müller P, Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
    • 6b Segawa Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2007; 46: 6710

      For catalytic carboboration via direct activation of a B–C bond, see:
    • 7a Suginome M, Yamamoto A, Murakami M. J. Am. Chem. Soc. 2003; 125: 6358
    • 7b Suginome M, Yamamoto A, Murakami M. Angew. Chem. Int. Ed. 2005; 44: 2380
    • 7c Suginome M, Yamamoto A, Murakami M. J. Organomet. Chem. 2005; 690: 5300
    • 7d Suginome M, Shirakura M, Yamamoto A. J. Am. Chem. Soc. 2006; 128: 14438
    • 7e Suginome M, Yamamoto A, Sasaki T, Murakami M. Organometallics 2006; 25: 2911

      For three-component carboboration with a boron electrophile and a carbon nucleophile, see:
    • 8a Yamamoto A, Suginome M. J. Am. Chem. Soc. 2005; 127: 15706
    • 8b Daini M, Yamamoto A, Suginome M. J. Am. Chem. Soc. 2008; 130: 2918
    • 8c Daini M, Suginome M. Chem. Commun. 2008; 5224
    • 8d Daini M, Yamamoto A, Suginome M. Asian J. Org. Chem. 2013; 2: 968

      For carboboration of other modes, see:
    • 9a Mikhaikov BM, Bubnov YN. Tetrahedron Lett. 1971; 12: 2127
    • 9b Bubnov YN, Nesmeyanova OA, Rudashevskaya TY, Mikhaikov BM, Kazansky BA. Tetrahedron Lett. 1971; 12: 2153
    • 9c Wrackmeyer B, Nöth H. J. Organomet. Chem. 1976; 108: C21
    • 9d Okuno Y, Yamashita M, Nozaki K. Angew. Chem. Int. Ed. 2011; 50: 920

      For copper-catalyzed carboboration of alkynes, see:
    • 10a Alfaro R, Parra A, Alemeán JG, Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
    • 10b Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
    • 10c Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
  • 11 For our previous work on copper-catalyzed carboboration of alkynes, see: Yoshida H, Kageyuki I, Ken T. Org. Lett. 2013; 15: 952
    • 12a Laitar DS, Tsui EY, Sadighi JP. Organometallics 2006; 25: 2405
    • 12b Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
    • 12c Sakaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
    • 12d Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
  • 13 For Pd-catalyzed carboboration of alkenes, see: Daini M, Suginome M. J. Am. Chem. Soc. 2011; 133: 4758
  • 14 Copper(II) acetate would be reduced to a copper(I) complex in situ, see: Hammond B, Jardine FH, Vohra AG. J. Inorg. Nucl. Chem. 1971; 33: 1017
  • 15 A major byproduct was benzylboronic acid pinacol ester.
  • 16 The stereochemistry of the major products could not be elucidated.
  • 17 For a review on radical clock reactions, see: Griller D, Ingold KU. Acc. Chem. Res. 1980; 13: 317

    • For hydroboration of alkenes via a β-borylalkyl copper species, see:
    • 18a Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2007; 47: 145
    • 18b Corberán R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
  • 19 Another catalytic pathway, which involves direct reaction of 6 with a carbon electrophile, may also be possible, see ref. 10a
    • 20a Chang YC, Nair MG, Nitiss JL. J. Nat. Prod. 1995; 58: 1901
    • 20b Setchell KD. R, Brown NM, Lydeking-Olse E. J. Nutr. 2002; 132: 3577
    • 20c Ingram D, Sanders K, Kolybaba M, Lopez D. Lancet 1997; 350: 990
    • 20d Lamartiniere CA. Am. J. Clin. Nutr. 2000; 71: 1705
    • 20e Adlercreutz H, Honjo H, Higashi A. Am. J. Clin. Nutr. 1991; 54: 1093
    • 20f Muthyala RS, Ju YH, Sheng S, Williams LD, Doerge DR, Katzenellenbogen BS, Helferich WG, Katzenellenbogen JA. Bioorg. Med. Chem. 2004; 12: 1559

      For the previous reports on total synthesis of equol, see:
    • 21a Heemstra JM, Kerrigan SA, Doerge DR, Helferich WG, Boulanger WA. Org. Lett. 2006; 8: 5441
    • 21b Gharpure SJ, Sathiyanarayanan AM, Jonnalagadda P. Tetrahedron Lett. 2008; 49: 2974
    • 22a Díes-González S, Kaur H, Zinn FK, Stevens ED, Nolan SP. J. Org. Chem. 2005; 70: 4784
    • 22b Chun J, Lee HS, Jung IG, Lee SW, Kim HJ, Son SU. Organometallics 2010; 29: 1518