Synlett 2014; 25(12): 1667-1679
DOI: 10.1055/s-0033-1341018
account
© Georg Thieme Verlag Stuttgart · New York

Oxidation of Organic Substrates with RuIV=O Complexes Formed by Proton-Coupled Electron Transfer

Tomoya Ishizuka
Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan   Fax: +81(29)853-4323   Email: kojima@chem.tsukuba.ac.jp
,
Shingo Ohzu
Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan   Fax: +81(29)853-4323   Email: kojima@chem.tsukuba.ac.jp
,
Takahiko Kojima*
Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan   Fax: +81(29)853-4323   Email: kojima@chem.tsukuba.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 27 December 2013

Accepted after revision: 22 February 2014

Publication Date:
11 April 2014 (online)


Abstract

We describe our recent progress in mechanistic investigations on substrate oxidation reactions with RuIV=O complexes having pyridylamine ligands. The RuIV=O complexes are synthesized from the corresponding RuII–OH2 complexes either through a proton-coupled electron-transfer procedure using a cerium(IV) complex as an oxidant or by bulk electrolysis. We have verified the presence of an adduct-formation equilibrium between the RuIV=O complex and a substrate in water, which strongly affects the reaction mechanism of the substrate oxidation. We have also shown that the reaction rates of the substrate oxidation in water are independent of the spin states of the RuIV centers and of the bond-dissociation enthalpy of the C–H bond of the substrate. Additionally, we have applied the RuII–OH2 complexes as catalysts for photocatalytic substrate oxidations and have observed very efficient catalytic activity.

1 Introduction

2 Formation, Characterization, and Reactivity of RuIV=O Complexes by Using a Peroxide as an Oxidant

3 Formation and Characterization of RuIV=O Complexes by a Proton-Coupled Electron-Transfer Procedure

4 Catalytic Oxidation of Organic Substrates by Proton-­Coupled Electron-Transfer Oxidation

5 Kinetic Studies on Substrate Oxidations with RuIV=O ­Complexes

6 Photocatalytic Oxidation of Organic Substrates

7 Concluding Remarks

 
  • References


    • For selected books on this topic, see:
    • 1a Sheldon RA, Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Process. Academic Press; New York: 1981
    • 1b Activation and Functionalization of Alkanes. Hill CL. Wiley; New York: 1989
    • 1c The Activation of Dioxygen and Homogeneous Catalytic Oxidation. Barton DH. R, Martell AE, Sawyer DT. Plenum; New York: 1993

      For selected reviews on this topic, see:
    • 2a Gunay A, Theopold KH. Chem. Rev. 2010; 110: 1060
    • 2b Sono M, Roach MP, Coulter ED, Dawson JH. Chem. Rev. 1996; 96: 2841
    • 2c Denisov ID, Makris TM, Sliger SG, Schlichting I. Chem. Rev. 2005; 105: 2253
    • 2d Abu-Omar MM, Loaiza A, Hontzeas N. Chem. Rev. 2005; 105: 2227
    • 2e Fukuzumi S. Coord. Chem. Rev. 2013; 257: 1564
    • 3a Meunier B. Biomimetic Oxidations Catalyzed by Transition Metal Complexes. Imperial College Press; London: 1998
    • 3b Que LJr, Tolman WB. Nature 2008; 455: 333
    • 3c Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sliger SG. Science 2000; 287: 1615
    • 3d Zhang J, Zheng H, Groce SL, Lipscomb JD. J. Mol. Catal. A: Chem. 2006; 251: 54
    • 4a Tomas RA. F, Bordado JC. M, Gomes JF. P. Chem. Rev. 2013; 113: 7421
    • 4b Boisvert L, Goldberg KI. Acc. Chem. Res. 2012; 45: 899
    • 4c Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 5a Wallar BJ, Lipscomb JD. Chem. Rev. 1996; 96: 2625
    • 5b Costas M, Mehn MP, Jensen MP, Que LJr. Chem. Rev. 2004; 104: 939
    • 5c Krebs C, Fujimori DG, Walsh CT, Bollinger JM. Jr. Acc. Chem. Res. 2007; 40: 484
    • 6a Cytochrome P450: Structure, Mechanism, and Biochemistry. Ortiz de Montellano PR. Plenum; New York: 1995. 2nd ed.
    • 6b Kohen A, Klinman JP. Acc. Chem. Res. 1998; 31: 397
    • 6c Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM. Jr. J. Am. Chem. Soc. 2003; 125: 13008
    • 6d Nesheim JC, Lipscomb JD. Biochemistry 1996; 35: 10240
    • 6e Li D, Huang X, Han K, Zhan C.-G. J. Am. Chem. Soc. 2011; 133: 7416
    • 6f Sivaramakrishnan S, Ouellet H, Matsumura H, Guan S, Moënne-Loccoz P, Burlingame AL, Ortiz de Montellano PR. J. Am. Chem. Soc. 2012; 134: 6673
    • 6g McIntosh JA, Coelho PS, Farwell CC, Wang ZJ, Lewis JC, Brown TR, Arnold FH. Angew. Chem. Int. Ed. 2013; 52: 9309
    • 7a Baik M.-HH, Newcomb M, Friesner RA, Lippard SJ. Chem. Rev. 2003; 103: 2385
    • 7b Beauvais LG, Lippard SJ. J. Am. Chem. Soc. 2005; 127: 7370
    • 7c Xue G, Wang D, de Hont R, Fiedler AT, Shan X, Münck E, Que LJr. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 20713
    • 7d Park K, Bell CB. III, Liu LV, Wang D, Xue G, Kwak Y, Wong SD, Light KM, Zhao J, Alp EE, Yoda Y, Saito M, Kobayashi Y, Ohta T, Seto M, Que LJr, Solomon EI. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 6277
    • 8a Hessenauer-Ilicheva N, Franke A, Meyer D, Woggon W.-D, van Eldik R. J. Am. Chem. Soc. 2007; 129: 12473
    • 8b Lee KA, Nam W. J. Am. Chem. Soc. 1997; 119: 1916
    • 8c Jackson TA, Rohde J.-U, Seo MS, Sastri CV, DeHont R, Stubna A, Ohta T, Kitagawa T, Münck E, Nam W, Que L. J. Am. Chem. Soc. 2008; 130: 12394
    • 8d Chen K, Que LJr. J. Am. Chem. Soc. 2001; 123: 6327
    • 9a Fukuzumi S, Kishi T, Kotani H, Lee Y.-M, Nam W. Nat. Chem. 2011; 3: 38
    • 9b Groves JT, Lee J, Marla SS. J. Am. Chem. Soc. 1997; 119: 6269
    • 9c Pitié M, Bernadou J, Meunier B. J. Am. Chem. Soc. 1995; 117: 2935
    • 9d Parsell TH, Yang M.-Y, Borovik AS. J. Am. Chem. Soc. 2009; 131: 2762
    • 9e Larsen AS, Wang K, Lockwood MA, Rice GL, Won T.-J, Lovell S, Sadílek M, Tureček F, Mayer JM. J. Am. Chem. Soc. 2002; 124: 10112
    • 9f Wang K, Mayer JM. J. Am. Chem. Soc. 1997; 119: 1470
    • 10a Bakac A. Coord. Chem. Rev. 2006; 250: 2046
    • 10b Bakac A, Wang W.-D. J. Am. Chem. Soc. 1996; 118: 10325
    • 10c Pestovsky O, Bakac A. J. Am. Chem. Soc. 2003; 125: 14714
    • 10d Cho J, Woo J, Han JE, Kubo M, Ogura T, Nam W. Chem. Sci. 2011; 2: 2057
    • 10e Cho J, Woo J, Nam W. J. Am. Chem. Soc. 2012; 134: 11112
    • 11a Hanson SK, Baker RT, Gordon JC, Scott BL, Sutton AD, Thorn DL. J. Am. Chem. Soc. 2009; 131: 428
    • 11b Waidmann CR, Zhou X, Tsai EA, Kaminsky W, Hrovat DA, Borden WT, Mayer JM. J. Am. Chem. Soc. 2009; 131: 4729
    • 12a Yip W.-P, Yu W.-Y, Zhu N, Che C.-M. J. Am. Chem. Soc. 2005; 127: 14239
    • 12b Goldstein AS, Beer RH, Drago RS. J. Am. Chem. Soc. 1994; 116: 2424
    • 12c Thompson MS, Meyer TJ. J. Am. Chem. Soc. 1982; 104: 4106
    • 12d Lam WW. Y, Man W.-L, Leung C.-F, Wong C.-Y, Lau T.-C. J. Am. Chem. Soc. 2007; 129: 13646
    • 13a Che C.-M, Cheng W.-K. J. Am. Chem. Soc. 1986; 108: 4644
    • 13b Marshman RW, Shapley PA. J. Am. Chem. Soc. 1990; 112: 8369
    • 13c Sugimoto H, Kitayama K, Mori S, Itoh S. J. Am. Chem. Soc. 2012; 134: 19270
    • 14a Lee S.-K, Fox BG, Froland WA, Lipscomb JD, Münck E. J. Am. Chem. Soc. 1993; 115: 6450
    • 14b Meunier B, Visser SP, Shaik S. Chem. Rev. 2004; 104: 3947
    • 15a Dawson JH, Sono M. Chem. Rev. 1987; 87: 1255
    • 15b Ortiz de Montellano PR. Chem. Rev. 2010; 110: 932
    • 16a Rodríguez-López JN, Lowe DJ, Hernández-Ruiz J, Hinter AN. P, García-Cánovas F, Thorneley RN. F. J. Am. Chem. Soc. 2001; 123: 11838
    • 16b Berglund GI, Carlsson GH, Smith AT, Szöke H, Henriksen A, Hadju J. Nature 2002; 417: 463
    • 17a Sawada Y, Matsumoto K, Katsuki T. Angew. Chem. Int. Ed. 2007; 46: 4559
    • 17b Fujita M, Costas M, Que LJr. J. Am. Chem. Soc. 2003; 125: 9912
    • 18a Nam W, Jin SW, Lim MH, Ryu JY, Kim C. Inorg. Chem. 2002; 41: 3647
    • 18b Battioni P, Cardin E, Louloudi M, Schöllhorn B, Spyroulias GA, Mansuy D, Traylor TG. Chem. Commun. 1996; 2037
    • 18c Nishiyama H, Shimada T, Itoh H, Sugiyama H, Motoyama Y. Chem. Commun. 1997; 1863
    • 19a Huynh MH. V, Meyer TJ. Chem. Rev. 2007; 107: 5004
    • 19b Warren JJ, Tronic TA, Mayer JM. Chem. Rev. 2010; 110: 6961
    • 19c Meyer TJ, Huynh MH. V. Inorg. Chem. 2003; 42: 8140
    • 19d Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem. Rev. 2012; 112: 4016
    • 20a Lee Y.-M, Dhuri SN, Sawant SC, Cho J, Kubo M, Ogura T, Fukuzumi S. Angew. Chem. Int. Ed. 2009; 48: 1803
    • 20b Sawant SC, Wu X, Cho J, Cho K.-B, Kim SH, Seo MS, Lee Y.-M, Kubo M, Ogura T, Shaik S, Nam W. Angew. Chem. Int. Ed. 2010; 49: 8190
    • 20c Lee Y.-M, Hong S, Morimoto Y, Shin W, Fukuzumi S, Nam W. J. Am. Chem. Soc. 2010; 132: 10668
    • 21a Bozoglian F, Romain S, Erten MZ, Todorova TK, Sens C, Mola J, Rodríguez M, Romero I, Benet-Buchholz J, Fontrodona X, Cramer CJ, Gagliardi L, Llobet A. J. Am. Chem. Soc. 2009; 131: 15176
    • 21b Sartorel A, Miró P, Salvadori E, Romain S, Carrano M, Scorrano G, Valentin MD, Llobet A, Bonchio M. J. Am. Chem. Soc. 2009; 131: 16951
    • 22a Rüttinger W, Dismukes GC. Chem. Rev. 1997; 97: 1
    • 22b McEvoy JP, Brudvig GW. Chem. Rev. 2006; 106: 4455
    • 22c Meyer TJ, Huynh MH. V, Thorp HH. Angew. Chem. Int. Ed. 2007; 46: 5284
    • 23a Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Science 2004; 303: 1831
    • 23b Umena Y, Kawakami K, Shen J.-R, Kamiya N. Nature 2011; 473: 55
  • 24 Froland WA, Andersson KK, Lee S.-K, Liu Y, Lipscomb JD. J. Biol. Chem. 1992; 267: 17588
  • 25 Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
    • 26a Stultz LK, Binstead RA, Reynolds MS, Meyer TJ. J. Am. Chem. Soc. 1995; 117: 2520
    • 26b Lebeau EL, Binstead RA, Meyer TJ. J. Am. Chem. Soc. 2001; 123: 10535
    • 26c Hornstein BJ, Dattelbaum DM, Schoonover JR, Meyer TJ. Inorg. Chem. 2007; 46: 8139
    • 26d Che C.-M, Lau K, Lau T.-C, Poon C.-K. J. Am. Chem. Soc. 1990; 112: 5176
    • 26e Che C.-M, Cheng K.-W, Chan MC. W, Lau T.-C, Mak C.-K. J. Org. Chem. 2000; 65: 7996
    • 26f Fung W.-H, Yu W.-Y, Che C.-M. J. Org. Chem. 1998; 63: 7715
    • 27a Meyer TJ. Acc. Chem. Res. 1989; 22: 163
    • 27b Chan SL.-F, Kan Y.-H, Yip K.-L, Huang J.-S, Che C.-M. Coord. Chem. Rev. 2011; 255: 899
    • 27c Zhou M, Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875
    • 28a Seok WK, Meyer TJ. J. Am. Chem. Soc. 1988; 110: 7358
    • 28b Neubold P, Wieghardt K, Nuber B, Weiss J. Angew. Chem. Int. Ed. Engl. 1988; 27: 933
    • 28c Cheng W.-C, Yu W.-Y, Cheung K.-K, Che C.-M. J. Chem. Soc., Dalton Trans. 1994; 57
    • 28d Dutta PK, Das SK. J. Am. Chem. Soc. 1997; 119: 4311
    • 28e Che C.-M, Ho C, Lau T.-C. J. Chem. Soc., Dalton Trans. 1991; 1901
    • 29a Khan MM. T, Chatterjee D, Merchant RR, Paul P, Abdi SH. R, Srinivas D, Siddiqui MR. H, Moiz MA, Bhadbhade MM, Venkatasubramanian K. Inorg. Chem. 1992; 31: 2711
    • 29b Guan X, Chan SL.-F, Che C.-M. Chem. Asian J. 2013; 8: 2046
    • 30a Perrier S, Lau TC, Kochi JK. Inorg. Chem. 1990; 29: 4190
    • 30b Cheng W.-C, Yu W.-Y, Cheung K.-K, Che C.-M. J. Chem. Soc., Chem. Commun. 1994; 1063
    • 30c Che C.-M, Yu W.-Y, Chan P.-M, Cheng W.-C, Peng S.-M, Lau K.-C, Li W.-K. J. Am. Chem. Soc. 2000; 122: 11380
    • 31a Djerassi C, Engle RR. J. Am. Chem. Soc. 1953; 75: 3838
    • 31b Carlsen PH. J, Katsuki T, Martin VS, Sharpless KB. J. Org. Chem. 1981; 46: 3936
    • 31c Drees M, Strassner T. J. Org. Chem. 2006; 71: 1755
    • 32a Cheung W.-H, Yu W.-Y, Yip W.-P, Zhu N.-Y, Che C.-M. J. Org. Chem. 2002; 67: 7716
    • 32b Wong K.-Y, Che C.-M, Anson FC. Inorg. Chem. 1987; 26: 737
    • 33a Fung W.-H, Yu W.-Y, Che C.-M. J. Org. Chem. 1998; 63: 2873
    • 33b Che C.-M, Ho C, Lau T.-C. J. Chem. Soc., Dalton Trans. 1991; 1259
    • 33c McNeill E, Du Bois J. J. Am. Chem. Soc. 2010; 132: 10202
  • 34 Che C.-M, Yip W.-P, Yu W.-Y. Chem. Asian J. 2006; 1: 453
    • 35a Yukawa Y, Aoyagi K, Kurihara M, Shirai K, Shimizu K, Mukaida M, Takeuichi T, Kakihana H. Chem. Lett. 1985; 283
    • 35b Groves JT, Quinn R. J. Am. Chem. Soc. 1985; 107: 5790
    • 36a Che C.-M, Lai T.-F, Wong K.-Y. Inorg. Chem. 1987; 26: 2289
    • 36b Dhuri SN, Seo MS, Lee Y.-M, Hirao H, Wang Y, Nam W, Shaik S. Angew. Chem. Int. Ed. 2008; 47: 3356
    • 37a Moyer BA, Thompson MS, Meyer TJ. J. Am. Chem. Soc. 1980; 102: 2310
    • 37b Moyer BA, Meyer TJ. Inorg. Chem. 1981; 20: 436
    • 37c Gersten SW, Samuels GJ, Meyer TJ. J. Am. Chem. Soc. 1982; 104: 4029
    • 37d Gilbert JA, Eggleston DS, Murphy WR. Jr, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ. J. Am. Chem. Soc. 1985; 107: 3855
    • 37e Dobson JC, Seok WK, Meyer TJ. Inorg. Chem. 1986; 25: 1513
    • 37f Stultz LK, Huynh MH. V, Binstead RA, Curry M, Meyer TJ. J. Am. Chem. Soc. 2000; 122: 5984
    • 38a Che C.-M, Yam VW.-W, Mak TC. W. J. Am. Chem. Soc. 1990; 112: 2284
    • 38b Lam WW. Y, Yiu SM, Yiu DT. Y, Lau T.-C, Yip WP, Che C.-M. Inorg. Chem. 2003; 42: 8011
    • 39a Szczepura LF, Maricich SM, See RF, Churchill MR, Takeuchi KJ. Inorg. Chem. 1995; 34: 4198
    • 39b Bryant JR, Mayer JM. J. Am. Chem. Soc. 2003; 125: 10351
  • 40 Kojima T, Hayashi K, Iizuka S, Tani F, Naruta Y, Kawano M, Ohashi Y, Hirai Y, Ohkubo K, Matsuda Y, Fukuzumi S. Chem. Eur. J. 2007; 13: 8212
  • 41 Haber F, Weiss J. Proc. R. Soc. London, Ser. A 1934; 147: 332
    • 42a Nam W, Valentine JS. J. Am. Chem. Soc. 1993; 115: 1772
    • 42b Nam W, Kim I, Lim MH, Choi HJ, Lee JS, Jang HG. Chem. Eur. J. 2002; 8: 2067
    • 42c Song WJ, Sun YJ, Choi SK, Nam W. Chem. Eur. J. 2006; 12: 130
    • 43a Hirai Y, Kojima T, Mizutani Y, Shiota Y, Yoshizawa K, Fukuzumi S. Angew. Chem. Int. Ed. 2008; 47: 5772
    • 43b Kojima T, Hirai Y, Ishizuka T, Shiota Y, Yoshizawa K, Ikemura K, Ogura T, Fukuzumi S. Angew. Chem. Int. Ed. 2010; 49: 8449
    • 43c Ohzu S, Ishizuka T, Hirai Y, Jiang H, Sakaguchi M, Ogura T, Fukuzumi S, Kojima T. Chem. Sci. 2012; 3: 3421
    • 44a Jang HG, Cox DD, Que LJr. J. Am. Chem. Soc. 1991; 113: 9200
    • 44b Tyeklár Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD. J. Am. Chem. Soc. 1993; 115: 2611
    • 44c Hayashi H, Fujinami S, Nagatomo S, Ogo S, Suzuki M, Uehara A, Watanabe Y, Kitagawa T. J. Am. Chem. Soc. 2000; 122: 2124
    • 45a Lonnon DG, Craig DC, Colbran SB. Inorg. Chem. Commun. 2003; 6: 1351
    • 45b Cho J, Furutachi H, Fujinami S, Suzuki M. Angew. Chem. Int. Ed. 2004; 43: 3300
    • 46a Lubben M, Meetsma A, Wilkinson EC, Feringa B, Que LJr. Angew. Chem. Int. Ed. Engl. 1995; 34: 1512
    • 46b Rohde J.-U, Torelli S, Shan X, Lim MH, Klinker EJ, Kaizer J, Chen K, Nam W, Que LJr. J. Am. Chem. Soc. 2004; 126: 16751
    • 46c Chen J, Lee Y.-M, Davis KM, Wu X, Seo MS, Cho K.-B, Yoon H, Park YJ, Fukuzumi S, Pushkar YN, Nam W. J. Am. Chem. Soc. 2013; 135: 6388
    • 47a Tyeklár Z, Karlin KD. Acc. Chem. Res. 1989; 22: 241
    • 47b Fukuzumi S, Karlin KD. Coord. Chem. Rev. 2013; 257: 187
    • 47c Que LJr, Dong Y. Acc. Chem. Res. 1996; 29: 190
    • 47d Que LJr, Ho RY. N. Chem. Rev. 1996; 96: 2607
  • 48 Ishizuka T, Ohzu S, Kotani H, Shiota Y, Yoshizawa K, Kojima T. Chem. Sci. 2014; 5: 1429
  • 49 Wang R, Vos JG, Schmehl RH, Hage R. J. Am. Chem. Soc. 1992; 114: 1964
  • 50 Evans DF, Jakubovic DA. J. Chem. Soc., Dalton Trans. 1988; 2927
  • 51 Paeng IR, Nakamoto K. J. Am. Chem. Soc. 1990; 112: 3289
  • 52 Kojima T, Nakayama K, Ikemura K, Ogura T, Fukuzumi S. J. Am. Chem. Soc. 2011; 133: 11692
    • 53a Cheng W.-C, Yu W.-Y, Zhu J, Cheung K.-K, Peng S.-M, Poon C.-K, Che C.-M. Inorg. Chim. Acta 1996; 24: 105
    • 53b Che C.-M, Tang W.-T, Wong W.-T, Lai T.-F. J. Am. Chem. Soc. 1989; 111: 9048
    • 53c Aoyagi K, Yukawa Y, Shimizu K, Mukaida M, Takeuchi T, Kakihana H. Bull. Chem. Soc. Jpn. 1986; 59: 1493
  • 54 Kojima T, Nakayama K, Sakaguchi M, Ogura T, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2011; 133: 17901
    • 55a Kojima T, Morimoto T, Sakamoto T, Miyazaki S, Fukuzumi S. Chem. Eur. J. 2008; 14: 8904
    • 55b Kojima T, Sakamoto T, Matsuda Y. Inorg. Chem. 2004; 43: 2243
  • 56 Shiota Y, Herrera J, Juhasz G, Abe T, Ohzu S, Ishizuka T, Kojima T, Yoshizawa K. Inorg. Chem. 2011; 50: 6200
  • 57 Ayata S, Stefanova A, Ernst S, Baltruschat H. J. Electroanal. Chem. 2013; 701: 1
    • 58a Schröder D, Shaik S. Angew. Chem. Int. Ed. 2011; 50: 3850
    • 58b Kojima T, Fukuzumi S. Angew. Chem. Int. Ed. 2011; 50: 3852
  • 59 Saouma CT, Mayer JM. Chem. Sci. 2014; 5: 21
  • 60 Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press; Boca Raton: 2003
    • 61a Ingold KU, Russell GA In Free Radicals. Kochi JK. Wiley; New York: 1973. Chapter 2
    • 61b Mayer JM. Acc. Chem. Res. 1998; 31: 441
    • 62a Wang D, Zhang M, Bühlmann P, Que LJr. J. Am. Chem. Soc. 2010; 132: 7638
    • 62b Goldsmith CR, Jonas RT, Stack TD. P. J. Am. Chem. Soc. 2002; 124: 83
  • 63 Finn M, Friedline R, Suleman NK, Wohl CJ, Tanko JM. J. Am. Chem. Soc. 2004; 126: 7578
  • 64 Wang X, Peter S, Kinne M, Hofrichter M, Groves JT. J. Am. Chem. Soc. 2012; 134: 12897
    • 65a Hammes-Schiffer S, Soudackov AV. J. Phys. Chem. B 2008; 112: 14108
    • 65b Zhang M.-TT, Irebo T, Johansson O, Hammarström L. J. Am. Chem. Soc. 2011; 133: 13224
  • 66 Ohzu S, Ishizuka T, Hirai Y, Fukuzumi S, Kojima T. Chem. Eur. J. 2013; 19: 1563
    • 67a Dempsey JL, Winkler JR, Gray HB. Chem. Rev. 2010; 110: 7024
    • 67b Low DW, Winkler JR, Gray HB. J. Am. Chem. Soc. 1996; 118: 117
    • 67c Berglund J, Pascher T, Winkler JR, Gray HB. J. Am. Chem. Soc. 1997; 119: 2464
  • 68 Kotani H, Suenobu T, Lee Y.-M, Nam W, Fukuzumi S. J. Am. Chem. Soc. 2011; 133: 3249
    • 69a Heidt LJ, Tregay GW, Middleton FA. Jr. J. Phys. Chem. 1970; 74: 1876
    • 69b Langford CH, Houlubor CA. Inorg. Chim. Acta 1981; 53: L59