Synlett 2014; 25(10): 1371-1380
DOI: 10.1055/s-0033-1340849
account
© Georg Thieme Verlag Stuttgart · New York

Catalytic Hydrogenation of Low-Reactivity Carbonyl Groups Using Bifunc­tional Chiral Tridentate Ligands

Matthew L. Clarke*
School of Chemistry, University of St Andrews, EaStCHEM, St Andrews, Fife, KY16 9ST, UK   Fax: +44(133)4463808   Email: mc28@st-andrews.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 28 October 2013

Accepted after revision: 14 January 2014

Publication Date:
11 March 2014 (online)


Abstract

This account describes studies on the catalytic hydrogenation of carbonyl groups that are not readily reduced. The development of well-defined chiral phosphine–diamine ruthenium catalysts for hydrogenation of ketones and esters is described. These chiral catalysts promote the hydrogenation of ketones functionalised with tertiary alkyl and gem-dimethyl groups with enantioselectivities of up to 98% ee. They also reduce a range of heterocyclic and nitrile-functionalised ketones that react slowly with or inhibit other catalysts. Changing from ruthenium to iridium complexes gives highly selective catalysts that also hydrogenate (the more reactive) secondary alkyl functionalised ketones, including those with unprotected amines. These catalysts operate rapidly at room temperature, require low catalysts loadings, and deliver up to 98% ee. Achiral variants of these catalysts also promote the hydrogenation of esters under mild conditions. This account also describes our studies that shed light on the mechanism of action of these catalysts, and a stereochemical model is proposed.

1 Introduction

2 Hydrogenation of Low-Reactivity Carbonyl Functions

3 Mechanism

4 Applications of the Catalysts

5 Outlook

 
  • References

  • 1 The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ, Eds.; Wiley-VCH; Weinheim: 2007
  • 2 Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
  • 3 Ohkuma T, Ooka H, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 10417
  • 4 Ohkuma T, Ooka H, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 2675
  • 5 Naud F, Malan C, Spindler F, Ruggeberg C, Schmidt AT, Blaser HU. Adv. Synth. Catal. 2006; 348: 47
    • 6a Xu YJ, Alcock NW, Clarkson GJ, Docherty G, Woodward G, Wills M. Org. Lett. 2004; 6: 4105
    • 6b Martins JE, Morris DJ, Wills M. Tetrahedron 2009; 11: 847
    • 6c Jolley KE, Zanotti-Gerosa A, Hancock F, Dyke A, Grainger DM, Medlock JA, Nedden HG, Le Paih JJ. M, Roseblade SJ, Seger A, Sivakumar V, Morris DJ, Wills M. Adv. Synth. Catal. 2012; 354: 2545
  • 7 Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Sandoval C, Noyori R. J. Am. Chem. Soc. 2006; 128: 8724
  • 8 Touge T, Hakamata T, Nara H, Kobayashi T, Sayo N, Saito T, Kayaki Y, Ikariya T. J. Am. Chem. Soc. 2011; 133: 14960
  • 9 Ito M, Endo Y, Ikariya T. Organometallics 2008; 27: 6053
  • 10 Ito J, Ujiie S, Nishiyama H. Organometallics 2009; 28: 630
  • 11 Guo RW, Chen XH, Elpelt C, Song DT, Morris RH. Org. Lett. 2005; 7: 1757
  • 12 Abdur-Rashid K, Guo RW, Lough AJ, Morris RH, Song DT. Adv. Synth. Catal. 2005; 347: 571
  • 13 Baratta W, Ballico M, Chelucci G, Siega K, Rigo P. Angew. Chem. Int. Ed. 2008; 47: 4362
  • 14 Burk MJ, Hems W, Herzberg D, Malan C, Zanotti-Gerosa A. Org. Lett. 2000; 2: 4173
  • 15 Lennon IC, Ramsden JA. Org. Process Res. Dev. 2005; 9: 110
  • 16 Cobley CJ, Henschke JP. Adv. Synth. Catal. 2003; 345: 195
  • 17 Dub PA, Ikariya T. ACS Catal. 2012; 2: 1718
  • 19 Clapham SE, Hadzovic A, Morris RH. Coord. Chem. Rev. 2004; 248: 2201
  • 20 Teunissen HT, Elsevier CJ. Chem. Commun. 1998; 1367
  • 21 Sablong R, Osborn JA. Tetrahedron Lett. 1996; 37: 4937
  • 22 Clarke ML. Catal. Sci. Tech. 2012; 2: 2418
  • 23 Balaraman E, Fogler E, Milstein D. Chem. Commun. 2012; 48: 1111
  • 24 Fogler E, Balaraman E, Ben-David Y, Leitus G, Shimon LJ. W, Milstein D. Organometallics 2011; 30: 3826
  • 25 Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2006; 45: 1113
    • 26a Laue S, Greiner L, Woltinger J, Liese A. Adv. Synth. Catal. 2001; 343: 711
    • 26b Gao JX, Ikariya T, Noyori R. Organometallics 1996; 15: 1087
  • 27 Clarke ML, Diaz-Valenzuela MB, Slawin AM. Z. Organometallics 2007; 26: 16
  • 28 Phillips SD, Andersson KH. O, Kann N, Kuntz MT, France MB, Wawrzyniak P, Clarke ML. Catal. Sci. Tech. 2011; 1: 1336
  • 29 Ohkuma T, Sandoval CA, Srinivasan R, Lin Q, Wei Y, Muniz K, Noyori R. J. Am. Chem. Soc. 2005; 127: 8288
    • 30a Rautenstrauch V, Hoang-Cong X, Churlaud R, Abdur-Rashid K, Morris RH. Chem.–Eur. J. 2003; 9: 4954
    • 30b Ohkuma T, Utsumi B, Tsutumi K, Murata K, Sandoval C, Noyori R. J. Am. Chem. Soc. 2006; 128: 8724
  • 31 Diaz-Valenzuela MB, Phillips SD, France MB, Gunn ME, Clarke ML. Chem.–Eur. J. 2009; 15: 1227
  • 32 Phillips SD, Fuentes JA, Clarke ML. Chem.–Eur. J. 2010; 16: 8002
    • 33a Fuentes JA, Phillips SD, Clarke ML. Chem. Central J. 2012; 6: 151
    • 33b Clarke ML, France MB, Frew JJ. R, Knight FD, Roff GJ. Synlett 2007; 1739
    • 33c Phillips S. D., Diaz-Valenzuela M. B., Clarke M. L., unpublished results.
  • 34 Fuentes JA, Carpenter I, Kann N, Clarke ML. Chem. Commun. 2013; 49: 10245
  • 35 Clarke ML, Roff GJ In Handbook of Homogeneous Hydrogenation . De Vries JG, Elsevier CJ, Eds Wiley-VCH; Weinheim: 2007. Chap. 15
  • 36 Takebayashi S, Bergens SH. Organometallics 2009; 28: 2349
  • 37 Saudan LA, Saudan CM, Debieux C, Wyss P. Angew. Chem. Int. Ed. 2007; 46: 7473
  • 38 Carpenter I, Eckelmann SC, Kuntz MT, Fuentes JA, France MB, Clarke ML. Dalton Trans. 2012; 41: 10136
    • 39a Spasyuk D, Smith S, Gusev DG. Angew. Chem. Int. Ed. 2012; 51: 1772
    • 39b Spasyuk D, Smith S, Gusev DG. Angew. Chem. Int. Ed. 2013; 52: 2538
  • 40 Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, Ishida K, Kobayashi T, Sayo N, Saito T. Org. Process Res. Dev. 2012; 16: 166