Synlett 2014; 25(6): 884-888
DOI: 10.1055/s-0033-1340735
letter
© Georg Thieme Verlag Stuttgart · New York

Photooxidative Cleavage of Aromatic Alkenes into Aldehydes Using Catalytic Iodine and Molecular Oxygen under Visible Light Irradiation

Akitoshi Fujiya
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Atsumasa Kariya
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tomoya Nobuta
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Norihiro Tada
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tsuyoshi Miura
b   Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
,
Akichika Itoh*
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 24 September 2013

Accepted after revision: 13 January 2014

Publication Date:
10 February 2014 (online)


Abstract

We report a method for the photooxidative cleavage of aromatic alkenes to give aldehydes using molecular oxygen as the terminal oxidant, visible light, a catalytic amount of iodine and trifluoroacetic acid.

 
  • References and Notes

  • 1 Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Larock RC. Wiley-VCH; New York: 1999. 2nd ed., 1213
  • 2 Bailey PS. Chem. Rev. 1958; 58: 925
    • 3a Dorofeev SB, Eletskii AV, Smirnov BM. Dokl. Akad. Nauk SSSR 1981; 257: 592
    • 3b Koike K, Inoue G, Fukuda TJ. Chem. Eng. Jpn. 1999; 32: 295
    • 3c Ogle RA, Schumacher JL. Process Saf. Prog. 1998; 17: 127

      For recent examples, see:
    • 4a Travis BR, Narayan RS, Borhan B. J. Am. Chem. Soc. 2002; 124: 3824
    • 4b Kumar AV, Prakash RV, Sridhar R, Srinivas B, Rama RK. Synlett 2009; 739
    • 4c Kogan V, Quintal MM, Neumann R. Org. Lett. 2005; 7: 5039
    • 4d Ho C.-M, Yu W.-Y, Che C.-M. Angew. Chem. Int. Ed. 2004; 43: 3303
    • 4e Sato K, Aoki M, Noyori R. Science 1998; 281: 1646
    • 4f Rajabi F, Karimi N, Saidi MR, Primo A, Varma RS, Luque R. Adv. Synth. Catal. 2012; 354: 1707
    • 4g Anand N, Reddy KH. P, Rao KS. R, Burri DR. Catal. Lett. 2011; 141: 1355
    • 4h Wang A, Jiang H. J. Org. Chem. 2010; 75: 2321
  • 5 Wu X, Davis AP, Fry AJ. Org. Lett. 2007; 9: 5633
  • 6 Miao C.-X, Yu B, He L.-N. Green Chem. 2011; 13: 541
  • 7 Miyamoto K, Sei Y, Yamaguchi K, Ochiai M. J. Am. Chem. Soc. 2009; 131: 1382
    • 8a Photochemistry of Organic Compounds: From Concepts to Practice. Klán P, Wirz J. John Wiley & Sons; New York: 2009
    • 8b Hoffmann N. Chem. Rev. 2008; 108: 1052

      For recent reviews, see:
    • 9a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 9b Mallat T, Baiker A. Chem. Rev. 2004; 104: 3037
    • 9c Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 9d Piera J, Backvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
  • 10 Bhalerao U, Sridhar M. Tetrahedron Lett. 1993; 34: 4341
    • 11a Yuan Z, Zheng S, Zeng Y, Chen J, Han Y, Li Y, Li Y. New J. Chem. 2010; 34: 718
    • 11b Fu X.-G, Zhang L.-P, Wu L.-Z, Tung C.-H. J. Photosci. 2003; 10: 175
    • 11c Li H.-R, Wu L.-Z, Tung C.-H. Tetrahedron 2000; 56: 7437
  • 12 Murthy RS, Bio M, You Y. Tetrahedron Lett. 2009; 50: 1041
    • 13a Feng K, Peng M.-L, Wang D.-H, Zhang L.-P, Tung C.-H, Wu L.-Z. Dalton Trans. 2009; 9794
    • 13b Feng K, Zhang R.-Y, Wu L.-Z, Tu B, Peng M.-L, Zhang L.-P, Zhao D, Tung C.-H. J. Am. Chem. Soc. 2006; 128: 14685
  • 14 Baucherel X, Uziel J, Juge S. J. Org. Chem. 2001; 66: 4504
    • 15a Nobuta T, Fujiya A, Tada N, Miura T, Itoh A. Synlett 2012; 23: 2975
    • 15b Tada N, Ishigami T, Cui L, Ban K, Miura T, Itoh A. Tetrahedron Lett. 2013; 54: 256
    • 15c Kanai N, Nakayama H, Tada N, Itoh A. Org. Lett. 2010; 12: 1948
    • 15d Nobuta T, Hirashima S, Tada N, Miura T, Itoh A. Synlett 2010; 2335
    • 15e Nakayama H, Itoh A. Tetrahedron Lett. 2007; 48: 1131
    • 15f Nakayama H, Itoh A. Chem. Pharm. Bull. 2006; 54: 1620
    • 16a Nobuta T, Fujiya A, Hirashima S, Tada N, Miura T, Itoh A. Tetrahedron Lett. 2012; 53: 5306
    • 16b Hirashima S, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2011; 13: 2576
  • 17 Itoh A, Kodama T, Masaki Y, Inagaki S. Synlett 2002; 522
  • 18 Hirashima S, Kudo Y, Nobuta T, Tada N, Itoh A. Tetrahedron Lett. 2009; 50: 4328

    • Conversions of alkenes into aldehydes in the presence of iodine under aerobic photooxidative conditions have been reported previously, see:
    • 19a Hewgill FR. Aust. J. Chem. 1994; 47: 461
    • 19b Liu L, Yang B, Katz TJ, Poindexter NK. J. Org. Chem. 1991; 56: 3769
  • 20 Photooxidation; Typical Procedure A solution of trans-4,4′-di-tert-butylstilbene (1a) (0.15 mmol), I2 (0.015 mmol), and TFA (0.03 mmol) in dry MeOH–EtOAc (1:2 mL) was stirred in a Pyrex test-tube under air (open), and externally irradiated with four 22 W fluorescent lamps for 20 h. The mixture was quenched with aq Na2S2O3 solution and extracted with EtOAc (3 × 5 mL). The combined organic layer was washed with brine (20 mL) and aq HCl (2 M, 2 × 20 mL), dried over MgSO4 and concentrated in vacuo. Purification of the crude residue by column chromatography (hexane–EtOAc, 50:1) provided 4-tert-butylbenzaldehyde (2a) (41.1 mg, 84%).
  • 21 For heterolytic carbon–carbon bond cleavage reactions of hydroperoxides in methanol, see: Utaka M, Fujita Y, Takeda A. Chem. Lett. 1982; 1607
  • 22 Homolytic carbon–carbon bond cleavage reactions of hydroperoxides cannot be ruled out, see: Gu X, Zhang W, Salomon RG. J. Org. Chem. 2012; 77: 1554