Synlett 2014; 25(08): 1068-1080
DOI: 10.1055/s-0033-1340683
account
© Georg Thieme Verlag Stuttgart · New York

One-Pot Multi-Reaction Processes: Synthesis of Natural Products and Drug-Like Scaffolds

Ewen D. D. Calder
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK   Fax: +44(141)3304888   Email: Andrew.Sutherland@glasgow.ac.uk
,
Mark W. Grafton
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK   Fax: +44(141)3304888   Email: Andrew.Sutherland@glasgow.ac.uk
,
Andrew Sutherland*
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK   Fax: +44(141)3304888   Email: Andrew.Sutherland@glasgow.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 13 November 2013

Accepted: 23 December 2013

Publication Date:
10 February 2014 (online)


Abstract

One-pot multi-reaction processes involving Overman rearrangements, metathesis cyclizations, and Diels–Alder reactions have been developed for the rapid and efficient synthesis of amino-substituted carbocyclic and heterocyclic compounds. This account describes the development and optimization of these processes, as well as their applications in the synthesis of natural products and drug-like scaffolds.

1 Introduction

2 A One-Pot Overman Rearrangement and Ring-Closing Metathesis Reaction

2.1 Scope and Limitations

2.2 Applications of the One-Pot Two-Step Process

2.3 A Directed Overman Rearrangement and Ring-Closing Metathesis Reaction Process

3 A One-Pot Three-Step Ruthenium(II) Tandem Catalytic Process

3.1 Development and Scope

3.2 A Microwave-Mediated One-Pot Three-Step Process

4 A One-Pot Three-Step Process Involving a Ring-Closing Enyne Metathesis and a Diels–Alder Reaction

4.1 Synthesis of Substrates

4.2 An Unexpected Hydrogen-Bonding-Directed Diels–Alder Reaction

4.3 Application of the Synthesis for C1-Amino-Substituted Indanes and Tetralins

4.4 Development of a Two-Pot Reaction Process

5 Conclusions

 
  • References


    • For more recent and specific reviews, see:
    • 2a Zhou J. Chem. Asian J. 2010; 5: 422
    • 2b Ruiz M, López-Alvarado P, Giorgi G, Menéndez JC. Chem. Soc. Rev. 2011; 40: 3445
    • 2c Liu Y, Wan J.-P. Org. Biomol. Chem. 2011; 9: 6873
    • 2d Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 2e Galeštokova Z, Šebesta R. Eur. J. Org. Chem. 2012; 6688
    • 2f Foster RA. A, Willis MC. Chem. Soc. Rev. 2013; 42: 63
  • 3 Vaxelaire C, Winter P, Christmann M. Angew. Chem. Int. Ed. 2011; 50: 3605
  • 4 Clarke PA, Santos S, Martin WH. C. Green Chem. 2007; 9: 438
    • 5a Ishikawa H, Suzuki T, Hayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1304
    • 5b Ishikawa H, Suzuki T, Orita H, Uchimaru T, Hayashi Y. Chem. Eur. J. 2010; 16: 12616
    • 5c Ishikawa H, Honma M, Hayashi Y. Angew. Chem. Int. Ed. 2011; 50: 2824
    • 5d Ishikawa H, Bondzic BP, Hayashi Y. Eur. J. Org. Chem. 2011; 6020
  • 6 Hayashi Y, Umemiya S. Angew. Chem. Int. Ed. 2013; 52: 3450
  • 7 Overman LE, Carpenter NE. Org. React. (Hoboken, NJ, U. S.) 2005; 66: 1 ; and references therein
  • 8 Jamieson AG, Sutherland A. Org. Biomol. Chem. 2005; 3: 735
    • 9a Jamieson AG, Sutherland A. Org. Biomol. Chem. 2006; 4: 2932
    • 9b Jamieson AG, Sutherland A. Tetrahedron 2007; 63: 2123
    • 10a Fanning KN, Jamieson AG, Sutherland A. Org. Biomol. Chem. 2005; 3: 3749
    • 10b Swift MD, Sutherland A. Org. Biomol. Chem. 2006; 4: 3889
    • 10c Swift MD, Sutherland A. Tetrahedron Lett. 2007; 48: 3771
    • 10d Swift MD, Sutherland A. Tetrahedron 2008; 64: 9521
  • 11 Zaed AM, Sutherland A. Org. Biomol. Chem. 2010; 8: 4394
  • 12 Zaed AM, Sutherland A. Org. Biomol. Chem. 2011; 9: 8030
  • 13 Calder ED. D, Zaed AM, Sutherland A. J. Org. Chem. 2013; 78: 7223
  • 14 Daly M, Gill K, Sime M, Simpson GL, Sutherland A. Org. Biomol. Chem. 2011; 9: 6761
  • 15 Jamieson AG, Sutherland A. Org. Lett. 2007; 9: 1609
    • 16a Donohoe TJ, Blades K, Helliwell M, Moore PR, Winter JJ. G. J. Org. Chem. 1999; 64: 2980
    • 16b Donohoe TJ, Blades K, Moore PR, Waring MJ, Winter JJ. G, Helliwell M, Newcombe NJ, Stemp G. J. Org. Chem. 2002; 67: 7946
    • 16c Donohoe TJ. Synlett 2002; 1223
  • 17 O’Brien P, Childs AC, Ensor GJ, Hill CL, Kirby JP, Dearden MJ, Oxenford SJ, Rosser CM. Org. Lett. 2003; 5: 4955
  • 18 Nagashima H, Wakamatsu H, Ozaki N, Ishii T, Watanabe M, Tajima T, Itoh K. J. Org. Chem. 1992; 57: 1682
  • 19 Cassayre J, Dauge D, Zard SZ. Synlett 2000; 471
  • 20 Cardillo G, Orena M, Sandri S. J. Chem. Soc., Chem. Commun. 1983; 1489
  • 21 Swift MD, Sutherland A. Org. Lett. 2007; 9: 5239
  • 22 Ireland RE, Norbeck DW. J. Org. Chem. 1985; 50: 2198
  • 23 Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
    • 24a Grubbs RH. Handbook of Metathesis 2003
    • 24b Wilson GO, Porter KA, Weissman H, White SR, Sottos NR, Moore JS. Adv. Synth. Catal. 2009; 351: 1817
    • 25a Stevens AM, Richards CJ. Organometallics 1999; 18: 1346
    • 25b Nomura H, Richards CJ. Chem. Eur. J. 2007; 13: 10216
    • 25c Nomura H, Richards CJ. Org. Lett. 2009; 11: 2892
    • 26a Overman LE, Owen CE, Pavan MM, Richards CJ. Org. Lett. 2003; 5: 1809
    • 26b Anderson CE, Overman LE. J. Am. Chem. Soc. 2003; 125: 12412
    • 26c Anderson CE, Kirsch SF, Overman LE, Richards CJ, Watson MP. Org. Synth. 2007; 84: 148
  • 27 Swift MD. Ph.D. Thesis. University of Glasgow; UK: 2009
  • 28 Zaed AM, Swift MD, Sutherland A. Org. Biomol. Chem. 2009; 7: 2678
  • 29 Ahmad S, Thomas LH, Sutherland A. Org. Biomol. Chem. 2011; 9: 2801
  • 30 VanRheenen V, Kelly RC, Cha DY. Tetrahedron Lett. 1976; 17: 1973
  • 31 Ahmad S, Sutherland A. Org. Biomol. Chem. 2012; 10: 8251
  • 32 Swift MD, Donaldson A, Sutherland A. Tetrahedron Lett. 2009; 50: 3241
  • 33 Ahmad S, Swift MD, Farrugia LJ, Senn HM, Sutherland A. Org. Biomol. Chem. 2012; 10: 3937
    • 34a Pettit GR, Gaddamidi V, Herald DL, Singh SB, Cragg GM, Schmidt JM, Boettner FE, Williams M, Sagawa Y. J. Nat. Prod. 1986; 49: 995
    • 34b Pettit GR, Pettit GR. III, Backhaus RA, Boyd MR, Meerow AW. J. Nat. Prod. 1993; 56: 1682
    • 34c Gabrielsen B, Monath TP, Huggins JW, Kefauver DF, Pettit GR, Groszek G, Hollingshead M, Kirsi JJ, Shannon WM, Shubert EM, DaRe J, Ugarkar B, Ussery MA, Phelan MJ. J. Nat. Prod. 1992; 55: 1569
  • 35 Kharasch MS, Jensen EV, Urry WH. Science 1945; 102: 128
  • 36 Schmidt B, Pohler M. J. Organomet. Chem. 2005; 690: 5552
    • 37a Edlin CD, Faulkner J, Quayle P. Tetrahedron Lett. 2006; 47: 1145
    • 37b Edlin CD, Faulkner J, Fengas D, Helliwell M, Knight CK, House D, Parker J, Preece I, Quayle P, Raftery J, Richards SN. J. Organomet. Chem. 2006; 691: 5375
  • 38 Seigal BA, Fajardo C, Snapper ML. J. Am. Chem. Soc. 2005; 127: 16329
  • 39 McGonagle FI, Brown L, Cooke A, Sutherland A. Org. Biomol. Chem. 2010; 8: 3418
  • 40 McGonagle FI, Brown L, Cooke A, Sutherland A. Tetrahedron Lett. 2011; 52: 2330
  • 41 Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
  • 42 Kremsner JM, Kappe CO. J. Org. Chem. 2006; 71: 4651
  • 43 Grafton MW, Farrugia LJ, Senn HM, Sutherland A. Chem. Commun. 2012; 48: 7994
    • 44a Gensler WJ, Bruno JJ. J. Org. Chem. 1963; 28: 1254
    • 44b Eisch JJ, Kaska WC. J. Am. Chem. Soc. 1966; 88: 2213
    • 45a Graul A, Castaner J. Drugs Future 1998; 23: 903
    • 45b Sterling J, Veinberg A, Lerner D, Goldenberg W, Levy R, Youdim M, Finberg J. J. Neural Transm., Suppl. 1998; 52: 301
    • 46a Koe BK, Weissman A, Welch WM, Browne RG. J. Pharmacol. Exp. Ther. 1983; 226: 686
    • 46b Welch WM, Kraska AR, Sarges R, Koe BK. J. Med. Chem. 1984; 27: 1508
  • 47 For example, see: Adams C, Papillon J, Ksandar GM. US 2009/182007, 2009
  • 48 Grafton MW, Farrugia LJ, Sutherland A. J. Org. Chem. 2013; 78: 7199
  • 49 Fustero S, Bello P, Miró J, Simón A, del Pozo C. Chem. Eur. J. 2012; 18: 10991
  • 50 Zhang L, Sonaglia L, Stacey J, Lautens M. Org. Lett. 2013; 15: 2128