Synthesis 2014; 46(05): 669-677
DOI: 10.1055/s-0033-1340509
paper
© Georg Thieme Verlag Stuttgart · New York

Scalable Synthesis of Strained Cyclooctyne Derivatives

Ryan C. Chadwick
,
Sabrina Van Gyzen
,
Sophie Liogier
,
Alex Adronov*
Further Information

Publication History

Received: 28 October 2013

Accepted after revision: 09 December 2013

Publication Date:
10 January 2014 (online)


Abstract

Modifications to the Popik synthesis of aza-dibenzocyclooctyne (DIBAC) derivatives are described, which avoids tedious purifications and dramatically improves the yield. A new and analogous route to biarylazacyclooctynone (BARAC) through an amide disconnection was also attempted. The BARAC derivatives prepared were found to be unstable under the conditions employed, undergoing a known rearrangement. Finally, the synthesis of a difluoro-DIBAC derivative with a second-order rate constant intermediate between DIBAC and BARAC derivatives (0.50 M–1) is described. While more difficult to synthesize, this molecule was found to be considerably more stable than any BARAC derivatives that were prepared.

Supporting Information

 
  • References

  • 1 These authors contributed equally to this work.
  • 2 Blomquist AT, Liu LH. J. Am. Chem. Soc. 1953; 75: 2153
  • 3 Wittig G, Krebs A. Chem. Ber. 1961; 94: 3260
  • 4 Debets MF, van Berkel SS, Dommerholt J, Dirks AT. J, Rutjes FP. J. T, van Delft FL. Acc. Chem. Res. 2011; 44: 805
  • 5 Krebs A, Wilke J. Top. Curr. Chem. 1983; 109: 189
  • 6 Krebs A, Kimling H. Tetrahedron Lett. 1970; 761
  • 7 Krebs A, Kimling H. Angew. Chem. Int. Ed. 1971; 10: 509
  • 8 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 9 Agard NJ, Prescher JA, Bertozzi CR. J. Am. Chem. Soc. 2004; 126: 15046
  • 10 Winterfeldt E. Angew. Chem. Int. Ed. 1967; 6: 423
  • 11 de Almeida G, Sletten EM, Nakamura H, Palaniappan KK, Bertozzi CR. Angew. Chem. Int. Ed. 2012; 51: 2443
  • 12 Sletten EM, Bertozzi CR. Acc. Chem. Res. 2011; 44: 666
  • 13 Garcia-Hartjes J, Dommerholt J, Wennekes T, van Delft FL, Zuilhof H. Eur. J. Org. Chem. 2013; 3712
  • 14 Debets MF, van Berkel SS, Schoffelen S, Rutjes FP. J. T, van Hest JC. M, van Delft FL. Chem. Commun. 2010; 46: 97
  • 15 Kuzmin A, Poloukhtine A, Wolfert MA, Popik VV. Bioconjugate Chem. 2010; 21: 2076
  • 16 Jewett JC, Sletten EM, Bertozzi CR. J. Am. Chem. Soc. 2010; 132: 3688
  • 17 Gordon CG, Mackey JL, Jewett JC, Sletten EM, Houk KN, Bertozzi CR. J. Am. Chem. Soc. 2012; 134: 9199
  • 18 Chigrinova M, McKay CS, Beaulieu L.-PB, Udachin KA, Beauchemin AM, Pezacki JP. Org. Biomol. Chem. 2013; 11: 3436
  • 19 Lallana E, Fernandez-Trillo F, Sousa-Herves A, Riguera R, Fernandez-Megia E. Pharm. Res. 2012; 29: 902
  • 20 Lallana E, Riguera R, Fernandez-Megia E. Angew. Chem. Int. Ed. 2011; 50: 8794
  • 21 DeForest CA, Sims EA, Anseth KS. Chem. Mater. 2010; 22: 4783
  • 22 Beckmann E. Ber. Dtsch. Chem. Ges. 1886; 20: 2580
  • 23 Sachin K, Jadhav VH, Kim E.-M, Kim HL, Lee SB, Jeong H.-J, Lim ST, Sohn M.-H, Kim DW. Bioconjugate Chem. 2012; 23: 1680
  • 24 Campbell-Verduyn LS, Mirfeizi L, Schoonen AK, Dierckx RA, Elsinga PH, Feringa BL. Angew. Chem. Int. Ed. 2011; 50: 11117
  • 25 Eaton PE, Carlson GR, Lee JT. J. Org. Chem. 1973; 38: 4071
  • 26 Mücke P, Zabel M, Edge R, Collison D, Clément S, Záliš S, Winter RF. J. Organomet. Chem. 2011; 696: 3186
  • 27 Thompson WJ, Anderson PS, Britcher SF, Lyle TA, Thies JE, Magill CA, Varga SL, Schwering JE, Lyle PA, Christy ME. J. Med. Chem. 1990; 33: 789
  • 28 Schmuck C, Wienand W. Synthesis 2002; 655
  • 29 Wei Y, Chen C.-T. J. Am. Chem. Soc. 2007; 129: 7478
  • 30 Liu C, Li T, Rosi NL. J. Am. Chem. Soc. 2012; 134: 18886