Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(2): 293-297
DOI: 10.1055/s-0033-1340289
DOI: 10.1055/s-0033-1340289
letter
Asymmetric Direct Michael Reactions of Cyclohexanone with Aromatic Nitroolefins in Water Catalyzed by Novel Axially Unfixed Biaryl-Based Bifunctional Organocatalysts
Further Information
Publication History
Received: 11 September 2013
Accepted after revision: 17 October 2013
Publication Date:
04 December 2013 (online)
Abstract
A new family of axially unfixed biaryl-based water-compatible bifuctional organocatalysts were designed and synthesized for the asymmetric direct Michael reaction of cyclohexanone with various nitroolefins in water. One of the organocatalysts incorporates pyrrolidine and arylsulfonamide motifs as active organocatalytic sites, and axially unfixed biaryl as a skeleton; with this organocatalyst, the direct Michael reactions proceeded readily, furnishing the desired Michael adducts in high yields (up to 99% yield) with high levels of stereocontrol (up to >99:1 dr and 94% ee).
Key words
biaryl compounds - aqueous chemistry - organocatalysts - asymmetric Michael reaction - stereoselectivitySupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Bhanja C, Jena S, Nayak S, Mohapatra S. Beilstein J. Org. Chem. 2012; 8: 1668
- 1b Marcia de Figueiredo R, Christmann M. Eur. J. Org. Chem. 2007; 2575
- 1c Marques-Lopez E, Herrera RP, Christmann M. Nat. Prod. Rep. 2010; 27: 1138
- 2a Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 2b Sakthivel K, Notz W, Bui T, Barbas CF. J. Am. Chem. Soc. 2001; 123: 5260
- 2c Nising CF, Brase S. Chem. Soc. Rev. 2008; 37: 1218
- 2d Zhang Y, Wang W. Catal. Sci. Technol. 2012; 2: 42
- 2e Enders D, Wang C, Liebich JX. Chem. Eur. J. 2009; 15: 11058
- 2f Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
- 2g Nising CF, Brase S. Chem. Soc. Rev. 2012; 41: 988
- 2h Enders D, Lüttgen K, Narine AA. Synthesis 2007; 959
- 2i Vicario JL, Badía D, Carrillo L. Synthesis 2007; 2065
- 2j Krishna PR, Sreeshailam A, Srinivas R. Tetrahedron 2009; 65: 9657
- 2k Almaşi D, Alonso DA, Nájera C. Tetrahedron: Asymmetry 2007; 18: 299
- 3a Gruttadauria M, Giacalone F, Noto R. Adv. Synth. Catal. 2009; 351: 33
- 3b Paradowska J, Stodulski M, Mlynarski J. Angew. Chem. Int. Ed. 2009; 48: 4288
- 3c Raj M, Singh VK. Chem. Commun. 2009; 6687
- 3d Mase N, Barbas CF. Org. Biomol. Chem. 2010; 8: 4043
- 3e Bhowmick S, Bhowmick KC. Tetrahedron: Asymmetry 2011; 22: 1945
- 5a Vishnumaya Singh VK. Org. Lett. 2007; 9: 1117
- 5b Karthikeyan T, Sankararaman S. Tetrahedron: Asymmetry 2008; 19: 2741
- 5c Zheng Z, Perkins BL, Ni B. J. Am. Chem. Soc. 2010; 132: 50
- 5d Lo C.-M, Chow H.-F. J. Org. Chem. 2009; 74: 5181
- 5e Wu J, Ni B, Headley AD. Org. Lett. 2009; 11: 3354
- 5f Xiao J, Xu F.-X, Lu Y.-P, Loh T.-P. Org. Lett. 2010; 12: 1220
- 5g Chuan Y, Chen G, Peng Y. Tetrahedron Lett. 2009; 50: 3054
- 5h Moon HW, Kim DY. Tetrahedron Lett. 2010; 51: 2906
- 5i Bae HY, Some S, Oh JS, Lee YS, Song CE. Chem. Commun. 2011; 47: 9621
- 5j Jia Y, Mao Z, Wang R. Tetrahedron: Asymmetry 2011; 22: 2018
- 5k Qiao Y, He J, Ni B, Headley AD. Adv. Synth. Catal. 2012; 354: 2849
- 5l Singh S, Chimni SS. Tetrahedron: Asymmetry 2012; 23: 1068
- 5m Chen Q, Qiao Y, Ni B. Synlett 2013; 24: 839
- 6a Mase N, Watanabe K, Yoda H, Takabe K, Tanaka F, Barbas CF. J. Am. Chem. Soc. 2006; 128: 4966
- 6b Zu L, Wang J, Li H, Wang W. Org. Lett. 2006; 8: 3077
- 6c Palomo C, Landa A, Mielgo A, Oiarbide M, Puente Á, Vera S. Angew. Chem. Int. Ed. 2007; 46: 8431
- 6d Luo C, Du D.-M. Synthesis 2011; 1968
- 6e Zhu S, Yu S, Ma D. Angew. Chem. Int. Ed. 2008; 47: 545
- 6f Ma A, Zhu S, Ma D. Tetrahedron Lett. 2008; 49: 3075
- 6g Maltsev OV, Kucherenko AS, Zlotin SG. Eur. J. Org. Chem. 2009; 5134
- 6h Mager I, Zeitler K. Org. Lett. 2010; 12: 1480
- 7 Zhao H.-W, Yue Y.-Y, Li H.-L, Song X.-Q, Sheng Z.-H, Yang Z, Meng W, Yang Z. Synlett 2013; 24: 2160
- 8 Zhao H.-W, Li H.-L, Yue Y.-Y, Sheng Z.-H. Eur. J. Org. Chem. 2013; 1740
- 9 Asymmetric Michael Addition; General Procedure: A suspension of catalyst 2a (4.2 mg, 0.01 mmol), PhCO2H (1.2 mg, 0.01 mmol) and cyclohexanone (104 μL, 1.0 mmol) in water (0.5 mL) was stirred at r.t. for 30 min. Nitroolefin (0.1 mmol) was added and the mixture was stirred for the time indicated in the tables. The mixture was extracted with CH2Cl2 (2 × 5 mL) and the organic layers were dried over anhydrous Na2SO4 and concentrated in vacuo. A mixture of syn- and anti-Michael products was obtained through flash chromatography on silica gel (petroleum–EtOAc, 5:1). The dr and ee values were determined by chiral HPLC analysis [Chiralcel AS-H; hexane–2-propanol, 85:15; 1.0 mL/min; λ = 210 nm; tR = 13.91 (minor), 23.41 (major) min]. (S)-2-[(R)-2-Nitro-1-phenylethyl]cyclohexanone (Table 2, entry 1): Reaction time: 12 h. Yield: 85%; dr = 97:3 (syn/anti); ee = 89% (syn).1H NMR (400 MHz, CDCl3): δ = 7.28–7.32 (m, 3 H), 7.16–7.17 (m, 2 H), 4.94 (dd, J = 12.4, 4.0 Hz, 1 H), 4.60–4.66 (m, 1 H), 3.76 (d, J = 4.0 Hz, 1 H), 2.69 (s, 1 H), 2.38–2.49 (m, 2 H), 2.07 (d, J = 3.2 Hz, 1 H), 1.55–1.80 (m, 4 H), 1.19–1.28 (m, 1 H).
For selected reviews on applications of organocatalytic Michael additions in organic synthesis, see:
For selected reviews on asymmetric organocatalytic Michael additions, see:
For selected reviews on asymmetric organocatalytic Michael additions in water, see:
For recent examples on organocatalytic Michael addition of ketones and aldehydes to nitroolefins in water, see: