Synlett 2014; 25(4): 547-550
DOI: 10.1055/s-0033-1340176
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Cyanation of Aryl Bromides with Malononitrile via ­Carbon–Nitrile Bond Cleavage Mediated by Copper

Guo-ping Lu
Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Mei-jie Bu
Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Chun Cai*
Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 17 October 2013

Accepted after revision: 21 November 2013

Publication Date:
08 January 2014 (online)


Abstract

An efficient palladium catalytic system is developed for the cyanation of aryl bromides using malononitrile as a cheap, less toxic, stable and easy-to-handle ‘nonmetallic’ cyanide source, which proceeds via copper-catalyzed cleavage of carbon–nitrile (C–CN) bonds. The approach provides a novel and alternative route leading to aryl nitriles.

Supporting Information

 
  • References and Notes

    • 1a Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 1b Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
    • 1c Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 1d Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 2a Ellis GP, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
    • 2b Sundermeier M, Zapf A, Beller M. Eur. J. Inorg. Chem. 2003; 3513
    • 4a Jiang Z, Huang Q, Chen S, Long L, Zhou X. Adv. Synth. Catal. 2012; 354: 589
    • 4b Lin S, Wei Y, Liang F. Chem. Commun. 2012; 48: 9879
    • 4c Li Z, Li C.-J. Eur. J. Org. Chem. 2005; 3173
    • 5a Sundermeier M, Zapf A, Beller MA. Angew. Chem. Int. Ed. 2003; 42: 1661
    • 5b Yeung PY, So CM, Lau CP, Kwong FY. Org. Lett. 2011; 13: 648
    • 5c Yeung PY, So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2010; 49: 8918
    • 5d Yeung PY, Tsang CP, Kwong FY. Tetrahedron Lett. 2011; 52: 7038
  • 6 Yang D, Yang H, Fu H. Chem. Commun. 2011; 47: 2348
    • 7a Zhou W, Zhang L, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7094
    • 7b Diana GD, Cutcliffe D, Volkots DL, Mallamo JP, Bailey TR, Vescio N, Oglesby RC, Nitz TJ, Wetzel J. J. Med. Chem. 1993; 36: 3240
    • 7c Schareina T, Jackstell R, Schulz T, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2009; 351: 643
    • 7d Liskey CW, Liao X, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
    • 8a Marlin DS, Olmstead MM, Mascharak PK. Angew. Chem. Int. Ed. 2001; 40: 4752
    • 8b Lu T, Zhuang X, Li Y, Chen S. J. Am. Chem. Soc. 2004; 126: 4760
    • 8c Yang L.-Z, Li Y, Zhuang X.-M, Jiang L, Chen J.-M, Luck RL, Lu T.-B. Chem. Eur. J. 2009; 15: 12399
    • 8d Xu F, Huang W, You X.-Z. Dalton Trans. 2010; 39: 10652
  • 9 Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
  • 10 Palladium-Catalyzed Cyanation, General Procedure A mixture of aryl bromide (0.250 mmol), malononitrile (0.500 mmol), Pd catalyst (0.005 mmol), CuI (0.125 mmol), 1,10-phenanthroline (0.063 mmol), t-BuONa (0.500 mmol) and KF (0.500 mmol) in DMF or NMP (1 mL) was stirred at 130 °C for 24 h. Upon completion of the reaction, the mixture was diluted with EtOAc (4.0 mL), and filtered through a bed of silica gel layered over Celite. The volatiles were removed in vacuo to afford the crude product. The extent of conversion was determined by GC. Further purification by column chromatography on silica gel afforded the desired product.All products are known compounds, which are identified by 1H NMR, 13C NMR and MS, and compared with previously reported data.