RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2013; 24(19): 2581-2585
DOI: 10.1055/s-0033-1340164
DOI: 10.1055/s-0033-1340164
letter
Asymmetric Sharpless Dihydroxylation Reaction of Chiral Bishomoallylic Alcohols: Application to the Synthesis of the C1–C10–C5 Fragment of FR225654
Weitere Informationen
Publikationsverlauf
Received: 31. Juli 2013
Accepted after revision: 02. September 2013
Publikationsdatum:
18. Oktober 2013 (online)
Abstract
Toward the synthesis of FR225654, an antidiabetic natural product, the Sharpless asymmetric dihydroxylation of chiral bishomoallylic alcohols, never reported in the literature, was examined. Employing the pyrimidine class of ligands, a high level of matched diastereoselectivity was obtained. An application to the stereoselective synthesis of the C1–C10–C5 fragment of FR225654 was performed.
Key words
stereoselective synthesis - natural products - dihydroxylation - diols - diastereoselectivitySupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Takase S, Shibata T, Hino M, Nakajima H. J. Antibiot. 2005; 58: 447
- 1b Ohtsu Y, Sasamura H, Shibata T, Hino M, Nakajima H. J. Antibiot. 2005; 58: 452
- 1c Ohtsu Y, Yoshimura S, Kinoshita T, Takase S, Nakajima H. J. Antibiot. 2005; 58: 479
- 2a McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW. Antibiot. Chemother. 1952; 2: 281
- 2b Keller-Schierlein W, Roncari G. Helv. Chim. Acta 1962; 45: 138
- 2c Gäumann E, Hütter R, Keller-Schierlein W, Neipp L, Prelog V, Zahner H. Helv. Chim. Acta 1960; 43: 601
- 2d Abdalla MA, Yadav PP, Dittrich BA, Schüffler A, Laatsch H. Org. Lett. 2011; 13: 2156
-
3a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
- 3b Kolb HC, Sharpless KB In Transition Metals for Organic Synthesis . Vol. 2. Beller M, Bolm C. Wiley-VCH; Weinheim: 2004
- 4 A single synthesis of triol 4 has been reported: Thomas EJ, Whitehead JW. F. J. Chem. Soc., Perkin Trans. 1 1989; 507
- 5a Evans DA, Polniaszek RP, DeVries KM, Guinn DE, Mathre DJ. J. Am. Chem. Soc. 1991; 113: 7613
- 5b Tan Z, Liang B, Huo S, Shi J.-c, Negishi E.-i. Tetrahedron: Asymmetry 2006; 17: 512
- 5c Trost BM, Michaelis DJ, Charpentier J, Xu J. Angew. Chem. Int. Ed. 2012; 51: 204
- 6a Theurer M, Fischer P, Baro A, Nguyen G.-S, Kourist R, Bornscheuer U, Laschat S. Tetrahedron 2010; 66: 3814
- 6b Donohoe TJ, Johnson PD, Pye RJ, Keenan M. Org. Lett. 2005; 7: 1275
- 6c Donohoe TJ. Synlett 2002; 1223
- 7 Corey EJ, Noe MC, Ting AY. Tetrahedron Lett. 1996; 37: 1735
- 8a Bondar D, Liu J, Müller T, Paquette LA. Org. Lett. 2005; 7: 1813
- 8b In another paper, SAD of tert-butyltrimethylsilyl ether protected 4-methylpent-4-en-1-ol was reported, however, without mention of the ee of the resulting diol: O’Connor PD, Knight CK, Friedrich D, Peng X, Paquette LA. J. Org. Chem. 2007; 72: 1747
- 9 Lorenz M, Kalesse M. Org. Lett. 2008; 10: 4371
- 10 Typical Procedure for the Sharpless Asymmetric Dihydroxylation K2CO3 (415 mg, 3 mmol), K3Fe(CN)6 (1.18 g, 3 mol), K2OsO2(OH)4 (4 mg, 0.01 mmol), ligand (0.025 mol), and MeSO2NH2 (95 mg, 1 mmol) were added to a vigorously magnetically stirred solution of olefin (1 mmol) in a 1:1 mixture of t-BuOH–H2O (10 mL) at 0 °C. The reaction mixture was stirred at 0 °C and monitored by TLC. Upon completion, the reaction mixture was quenched with solid Na2SO3 (1.5 g), warmed to r.t., and stirred for an additional 60 min. The product was extracted with EtOAc, washed with brine, dried over MgSO4, concentrated, and purified on silica gel to afford an inseparable mixture of the required diol and the corresponding diastereomer.Spectroscopic Data of Diol 14 (Major Isomer)�1H NMR (300 MHz, CDCl3): δ = 7.26 (d, J = 8.6 Hz, 2 H), 6.89 (d, J = 8.6 Hz, 2 H), 4.47 (s, 2 H), 3.80 (s, 3 H), 3.42 (dd, J = 4.2, 9.0 Hz, 1 H), 3.38 (d, J = 12.0 Hz, 1 H), 3.32 (d, J = 12.0 Hz, 1 H), 3.21 (m, 1 H), 2.11 (m, 1 H), 1.68 (dd, J = 7.8, 14.6 Hz, 1 H), 1.36 (dd, J = 3.3, 14.6 Hz, 1 H), 1.16 (s, 3 H), 0.93 (d, J = 6.9 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 159.1, 12 9.3, 113.7, 76.6, 72.8, 71.8, 70.9, 55.0, 4 4.3, 28.6, 23.5, 19.5 ppm.Spectroscopic Data of Diol 16 (Minor Isomer)1H NMR (300 MHz, CDCl3): δ = 7.26 (d, J = 8.6 Hz, 2 H), 6.89 (d, J = 8.6 Hz, 2 H), 4. 46 (s, 2 H ), 3.80 (s, 3 H), 3.48 (m, 1 H), 3.38 (d, J = 11.0 Hz, 1 H), 3.32 (d, J = 11.0 Hz, 1 H), 3.19 (m, 1 H), 1.95 (m, 1 H), 1.63 (dd, J = 6.0, 14.4 Hz, 1 H), 1.45 (dd, J = 4.8, 14.4 Hz, 1 H), 1.16 (s, 3 H), 0.95 (d, J = 6 . 9 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3) δ = 159.1, 129.3, 113.7, 76.4, 72.6, 71.8, 69.0, 55.0, 44.0, 29.1, 24.3, 19.3 ppm. IR (neat): ν = 3360, 2932, 1611, 1513, 1462, 1246, 1033, 819, 771 cm–1. ESI-HRMS: m/z calcd for C15H24NaO4+ [MNa+]: 291.1567; found: 291.1570.�For spectroscopic data of all diols, see the Supporting Information.�
- 11a Heckrodt TJ, Mulzer J. Synthesis 2002; 1857
- 11b Haslett GW, Paterson I. Org. Lett. 2013; 15: 1338
- 11c For the typical procedure and spectroscopic data of substrates, see the Supporting Information.
- 12a Wang Y, Dong X, Larock RC. J. Org. Chem. 2003; 68: 3090
- 12b Hareau GP.-J, Koiwa M, Hikichi S, Sato F. J. Am. Chem. Soc. 1999; 121: 3640
- 13 For analytical data for 12 and 13, see the Supporting Information.
- 14 For the osmylation of (R)- and (S)-12 and (R)- and (S)-13 in the absence of chiral ligands, see general procedure (ref. 10), however, without ligand.
- 15 Analytical Data for 25 1H NMR (400 MHz, CDCl3): δ = 4.28–4.01 (br s, 2 H), 3.56 (dd, J = 3.6, 10.5 Hz, 1 H), 3.27 (dd, J = 9.0, 10.5 Hz, 1 H), 2.40 (d, J = 16.8 Hz, 1 Hz), 2.33 (d, J = 16.8 Hz, 1 H), 1.93 (m, 1 H), 1.58 (m, 2 H), 1.28 (s, 3 H), 0.86 (d, J = 6.9 Hz, 3 H), 0.13 (s, 9 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 103.7, 87.9, 71.7, 68.9, 47.3, 36.1, 31.8, 25.4, 19.6, 0.1 ppm. IR (neat): ν = 3276, 2958, 2927, 2175, 1460, 1423, 1376, 1248, 1032, 758 cm–1. ESI-HRMS: m/z calcd for C12H24NaO2Si+ [MNa+]: 251.1438; found: 251.1439. The relative configuration of 25 was confirmed by NMR experiments (NOESY analysis) of the corresponding γ-lactone (Figure 2).
For erythronolide, see for instance:
For lankanolide and lankamycin, see:
For ent-homoabyssomycin, see:
For the synthesis of olefin 5, see for instance:
For the synthesis of (S)- and (R)-iodides 13, see for instance: