Synlett 2013; 24(18): 2446-2450
DOI: 10.1055/s-0033-1340046
letter
© Georg Thieme Verlag Stuttgart · New York

Control of Hetero-Diels–Alder Stereoselectivity through Solvent Polarity and Brønsted or Lewis Acid Catalysis; Theory and Experiment

Olivier Loiseleur*
a   Syngenta Crop Protection AG, Research Chemistry, 4332 Stein, Switzerland   Email: olivier.loiseleur@syngenta.com
,
Jérôme Cassayre
a   Syngenta Crop Protection AG, Research Chemistry, 4332 Stein, Switzerland   Email: olivier.loiseleur@syngenta.com
,
Dominique Leca
a   Syngenta Crop Protection AG, Research Chemistry, 4332 Stein, Switzerland   Email: olivier.loiseleur@syngenta.com
,
Francesca Gaggini
a   Syngenta Crop Protection AG, Research Chemistry, 4332 Stein, Switzerland   Email: olivier.loiseleur@syngenta.com
,
Susan N. Pieniazek
b   Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095-1569, USA
,
Jennifer A. R. Luft
b   Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095-1569, USA
,
Kendall N. Houk*
b   Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095-1569, USA
› Author Affiliations
Further Information

Publication History

Received: 23 September 2013

Accepted after revision: 01 October 2013

Publication Date:
18 October 2013 (online)


Abstract

The stereoselectivity of cycloadditions involving 3-methyleneoxindole and 2-azadienes can be controlled by solvent polarity and by Lewis or Brønsted acid catalysis. The improvements in selectivity are advantageous for the synthesis of spiroquinazoline alkaloids such as alantrypinone and lapatin B.

 
  • References


    • For some examples, see:
    • 1a Sissouma D, Maingot L, Collet S, Guingant A. J. Org. Chem. 2006; 71: 8384
    • 1b Chao W, Mahajan YR, Weinreb SM. Tetrahedron Lett. 2006; 47: 3815
    • 1c Twin H, Batey RA. Org. Lett. 2004; 6: 913
    • 1d Avemaria F, Vanderheiden S, Bräse S. Tetrahedron 2003; 59: 6785
    • 2a Larsen OT, Frydenvang K, Frisvad JC, Christophersen C. J. Nat. Prod. 1998; 61: 1154
    • 2b For a review, see: Mhaske SB, Argade NO. Tetrahedron 2006; 62: 9787
    • 3a Kende AS, Fan J, Chen Z. Org. Lett. 2003; 5: 3205
    • 3b Chen Z, Fan J, Kende AS. J. Org. Chem. 2004; 69: 79
    • 4a Hart DJ. ARKIVOC 2010; (iv): 32
    • 4b Wu M, Ma D. Angew. Chem. Int. Ed. 2013; 52: 9759
    • 4c Takayuki W, Mitsuhiro A, Kenji N, Sayed AM, Kazumi Y, Masaaki M, Yoshihisa O, Atsushi N. Bioorg. Med. Chem. 2009; 17: 94
    • 4d Yamamoto K, Nishida A, Arisawa M, Yoshihisa ON. JP 2008184420, 2008
  • 5 Leca D, Gaggini F, Cassayre J, Loiseleur O, Pieniazek SN, Luft JA. R, Houk KN. J. Org. Chem. 2007; 72: 4284
  • 6 Karcher T, Sicking W, Saur J, Sustmann R. Tetrahedron Lett. 1992; 33: 8027
    • 7a Lamy-Schelkens H, Giomi D, Ghosez L. Tetrahedron Lett. 1989; 30: 5887
    • 7b Jnoff E, Ghosez L. J. Am. Chem. Soc. 1999; 121: 2617
    • 8a All calculations were performed with the GAUSSIAN 03 suite of programs (ref. 9a). All geometries were fully optimized at B3LYP/6-31G (d) [refs. 9b–d]. The nature of stationary points was confirmed by frequency analysis, with minima and TS having zero and one imaginary frequency, respectively. The reported gas-phase enthalpies come from B3LYP/6-31+G(d,p) energy calculations on the geometries optimized at the lower level, and include enthalpy corrections (298 K) at the same level of the geometry. Enthalpies in solution were computed by addition of the solvation free energies to the gas-phase enthalpies. Solvation free energies were computed as the energy differences between HF/6-31+G(d,p) single point energy calculations, on the DFT gas-phase geometries, in the corresponding solvent (PCM model [refs. 9e,f] and UAKS radii) and in the gas phase [ref. 9g].
    • 9a Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JrJ. A, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02. Gaussian Inc; Wallingford CT: 2004
    • 9b Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 9c Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623
    • 9d Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
    • 9e Mennucci B, Cammi R, Tomasi J. J. Chem. Phys. 1999; 110: 6858
    • 9f Cossi M, Scalmani G, Rega N, Barone V. J. Chem. Phys. 2002; 117: 43
    • 9g Takano Y, Houk KN. J. Chem. Theory Comput. 2005; 1: 70
  • 10 Celebi-Olcum N, Ess DH, Aviyente V, Houk KN. J. Am. Chem. Soc. 2007; 129: 4528
    • 11a Houk KN, Strozier RW. J. Am. Chem. Soc. 1973; 95: 4094
    • 11b Garcia JI, Martinez-Merino V, Mayoral JA, Salvatella L. J. Am. Chem. Soc. 1998; 120: 2415
  • 12 Laurence C, Gal J.-F In Lewis Basicity and Affinity Scales, Data and Measurements . Wiley; New York: 2010. 1st ed., 111