Synlett 2013; 24(17): 2183-2187
DOI: 10.1055/s-0033-1339854
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Advanced Strategies for Extending the Nitrogen Chain in the Synthesis of High Nitrogen Compounds

Yongxing Tang
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, P. R. of China   Fax: +86(25)84303286   Email: hyang@mail.njust.edu.cn   Email: gcheng@mail.njust.edu.cn
,
Hongwei Yang*
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, P. R. of China   Fax: +86(25)84303286   Email: hyang@mail.njust.edu.cn   Email: gcheng@mail.njust.edu.cn
,
Guangbin Cheng*
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, P. R. of China   Fax: +86(25)84303286   Email: hyang@mail.njust.edu.cn   Email: gcheng@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 08 June 2013

Accepted after revision: 26 August 2013

Publication Date:
20 September 2013 (online)


Abstract

The synthesis and handling of compounds containing long catenated nitrogen chains are challenging for researchers in this field. These challenges arise from their high endothermic, thermodynamic instability, and a serious lack of nitrogen–nitrogen bond-forming reactions. This paper addresses techniques of azo-coupling reaction between the diazonium salt of N-NH2 and amine derivative to form the longest nitrogen chain (N11). This type of nitrogen–nitrogen bond formation opens a new strategy for the construction of novel compounds containing odd or even numbers of catenated nitrogen atoms (≥9) especially for polynitrogen compounds.

 
  • References and Notes

    • 1a Zhang YQ, Parrish DA, Shreeve JM. Chem. Eur. J. 2012; 18: 987
    • 1b Sabatini JJ, Raab JM, Hann JrR. K, Damavarapu R, Klapötke TM. Chem. Asian J. 2012; 7: 1657
    • 1c Sabatini JJ, Nagori AV, Chen G, Chu P, Damavarapu R, Klapötke TM. Chem. Eur. J. 2012; 18: 628
    • 1d Kumar AS, Ghule VD, Subrahmanyam S, Sahoo AK. Chem. Eur. J. 2013; 19: 509
    • 1e Tao GH, Parrish DA, Shreeve JM. Inorg. Chem. 2012; 51: 5305
    • 1f Steinhauser G, Giester G, Wagner C, Weinberger P, Zachhuber B, Ramer G, Villa M, Lendl B. Inorg. Chem. 2012; 51: 6739
    • 1g Joo YH, Gao HX, Parrish DA, Cho SG, Goh EM, Shreeve JM. J. Mater. Chem. 2012; 22: 6123
    • 1h Fu Z, Su R, Wang Y, Wang YF, Zeng W, Xiao N, Wu YK, Zhou ZM, Chen J, Chen FX. Chem. Eur. J. 2012; 18: 1886
    • 1i Fischer N, Izsák D, Klapötke TM, Rappenglück S, Stierstorfer J. Chem. Eur. J. 2012; 18: 4051
    • 1j Cooper PW. Explosives Engineering . VCH; Weinheim: 1996
    • 2a Christe KO. Propellants Explos. Pyrotech. 2007; 32: 194
    • 2b Huynh MV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R. Angew. Chem. Int. Ed. 2004; 116: 5032
    • 2c Christe KO, Wilson WW, Sheehy JA, Boatz JA. Angew. Chem. In. Ed. 1999; 38: 2004
    • 2d Klapötke TM, Martin FA, Stierstorfer J. Angew. Chem. Int. Ed. 2011; 50: 4227
    • 3a Li YC, Qi C, Li SH, Zhang HJ, Sun CH, Yu YZ, Pang SP. J. Am. Chem. Soc. 2010; 132: 12172
    • 3b Li YC, Li SH, Qi C, Zhang HJ, Zhu MY, Pang SP. Acta Chim. Sinica 2011; 18: 2159
    • 3c Klapötke TM, Piercey DG. Inorg. Chem. 2011; 50: 2732
    • 3d Klapötke TM, Piercey DG, Stierstorfer J. Dalton Trans. 2012; 41: 9451
    • 3e Tang YX, Yang HW, Shen JH, Wu B, Ju XH, Lu CX, Cheng GB. New J. Chem. 2012; 36: 2447
  • 4 Ohsawa A, Arai H, Ohnishi H, Itoh T, Kaihoh T, Okada M, Igeta H. J. Org. Chem. 1985; 50: 5520
  • 5 Salazar L, Espada M, Avendańo C, Elguero J. J. Heterocycl. Chem. 1990; 27: 1109
  • 6 Raap R. Can. J. Chem. 1969; 47: 3677
  • 7 Tamura Y, Minamikawa J, Sumoto K, Fujii S, Ikeda M. J. Org. Chem. 1973; 38: 1239
  • 8 Herve G, Roussel C, Graindorge H. Angew. Chem. Int. Ed. 2010; 49: 3177
    • 9a Klapötke TM, Petermayer C, Piercey DG, Stierstorfer J. J. Am. Chem. Soc. 2012; 134: 20827
    • 9b Klapötke TM, Piercey DG, Stierstorfer J. Eur. J. Inorg. Chem. 2013; 1509
    • 9c Klapötke TM, Piercey DG, Stierstorfer J. Eur. J. Inorg. Chem. 2012; 5694
    • 10a Zhang YQ, Parrish DA, Shreeve JM. J. Mater. Chem. A 2013; 1: 585
    • 10b He CL, Zhang JH, Parrish DA, Shreeve JM. J. Mater. Chem. A 2013; 1: 2863
    • 11a Thottempudi V, Forohor F, Parrish DA, Shreeve JM. Angew. Chem. 2012; 124: 10019
    • 11b Gao HX, Ye C, Gupta OD, Xiao JC, Hiskey MA, Twamley B, Shreeve JM. Chem. Eur. J. 2007; 13: 3853
  • 12 Klapötke TM, Martin FA, Stierstorfer J. Chem. Eur. J. 2012; 18: 1487
  • 13 Liu L, He CL, Li CS, Li ZX. J. Chem. Crystallogr. 2012; 42: 816
    • 14a Christe KO, Wilson WW, Sheehy JA, Boatz JA. Angew. Chem. Int. Ed. 1999; 38: 2004
    • 14b Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO. J. Am. Chem. Soc. 2001; 123: 6308
  • 15 Wilson WW, Haiges R, Boatz JA, Christe KO. Angew. Chem. Int. Ed. 2007; 46: 3023
  • 16 Christe KO, Haiges R, Wilson WW, Boatz JA. Inorg. Chem. 2010; 49: 1245
  • 17 Tang YX, Yang HW, Wu B, Ju XH, Lu CX, Cheng GB. Angew. Chem. Int. Ed. 2013; 52: 4875
  • 18 Taha MA. M. J. Indian Chem. Soc. 2005; 82: 172
  • 19 Gaponik PN, Karavai VP. Chem. Heterocycl. Compd. 1984; 20: 1388
  • 20 Klapötke TM, Minar NK, Stierstorfer J. Polyhedron 2009; 28: 13
  • 21 Typical Procedure A solution of NaNO2 (0.69 g, 10 mmol) in H2O (5 mL) was added dropwise to a stirring solution of DAT (1.0 g, 10 mmol) in concd HCl (5 mL). The reaction mixture was kept at 0 °C for 30 min. The crude residues obtained after the removal of the solvent under vacuum was treated with hot EtOH (20 mL) and then filtered to remove unsolvable salt. The filtrate was evaporated, dried, and recrystallized with EtOH to afford 0.5 g of needle crystals. 1H NMR (500 MHz, DMSO-d 6, 25 °C, TMS): δ = 7.93 ppm. 13C NMR (126 MHz, DMSO-d 6, 25 °C, TMS): δ = 153.8, 152.5, 150.1 ppm. IR: 3403 (m), 3193 (m), 3157 (m), 3056 (s), 1692 (s), 1640 (vs), 1578 (w), 1472 (vw), 1447 (w), 1274 (w), 1052 (w), 984 (w), 893 (w), 773 (w), 728 (w), 673 (w) cm–1. Raman: 1684, 1582, 1390, 1284, 1062, 746 cm–1. BAM impact: 10 J; BAM friction: 160 N; electrostatic sensitivity discharge (ESD): 0.32 J.