Synlett 2013; 24(16): 2032-2044
DOI: 10.1055/s-0033-1339680
account
© Georg Thieme Verlag Stuttgart · New York

Oligoyne Derivatives as Reactive Precursors for the Preparation of Carbon Nanomaterials

Jean-François Morin*
Département de Chimie et Centre de Recherche sur les Matériaux Avancés (CERMA), 1045 Ave de la Médecine, Pavillon A.-Vachon, Université Laval, Québec, Qc G1V 0A6, Canada   Fax: +1(418)6567916   Email: jean-francois.morin@chm.ulaval.ca
› Author Affiliations
Further Information

Publication History

Received: 25 June 2013

Accepted after revision: 08 August 2013

Publication Date:
29 August 2013 (online)


Abstract

Carbon nanomaterials have been the subject of intense research over the past 20 years. Both the physical and all-organic methods used to prepare them possess advantages and drawbacks regarding purity, batch-to-batch uniformity, large-scale production, and conditions of preparation. In this account, we present an overview of ‘hybrid methods’, in which well-defined, reactive organic precursors based on alkynes are self-assembled and transformed using physical stimuli to produce carbon nanomaterials with different sizes, shapes, and functions.

1 Introduction

2 Topochemical Polymerization of [n]Yne Derivatives

2.1 Topochemical Polymerization of 1,4-Diarylbutadiyne Derivatives in the Gel and Xerogel States

2.2 Carbon-Rich Nanowires and Nanotubes

3 Conclusion

 
  • References

  • 1 Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Science 1996; 274: 1701
  • 2 Howard JB, Lafleur AL, Makarovsky Y, Mitra S, Pope CJ, Yadav TK. Carbon 1992; 30: 1183
  • 3 Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE. J. Phys. Chem. 1995; 99: 10694
  • 4 Ijima S. Nature 1991; 354: 56
    • 5a Hoheisel TN, Schettl S, Szilluweit R, Frauenrath H. Angew. Chem. Int. Ed. 2010; 49: 6496
    • 5b Schrettl S, Frauenrath H. Angew. Chem. Int. Ed. 2012; 51: 6569
    • 5c Chernick ET, Tykwinski RR. J. Phys. Org. Chem. 2013; 26: 742
    • 6a Boorum MM, Vasilev YV, Drewello T, Scott LT. Science 2001; 294: 828
    • 6b Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science 2002; 295: 1500
    • 6c Scott LT. Angew. Chem. Int. Ed. 2004; 43: 4994
    • 7a Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
    • 7b Fort EH, Donovan PM, Scott LT. J. Am. Chem. Soc. 2009; 131: 16006
    • 7c Merner BL, Dawe LN, Bodwell GJ. Angew. Chem. Int. Ed. 2009; 48: 5487
    • 7d Jasti R, Bertozzi CR. Chem. Phys. Lett. 2010; 494: 1
    • 7e Matsui K, Segawa Y, Namikawa T, Kamada K, Itami K. Chem. Sci. 2013; 4: 84
    • 8a Wu J, Gherghel L, Watson MD, Li J, Wang Z, Simpson CD, Kolb U, Müllen K. Macromolecules 2003; 36: 7082
    • 8b Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K. J. Am. Chem. Soc. 2008; 130: 4216
    • 8c Fogel Y, Zhi L, Rouhanipour A, Andrienko D, Räder HJ, Müllen K. Macromolecules 2009; 42: 6878
    • 8d Dössel L, Gherghel L, Feng X, Müllen K. Angew. Chem. Int. Ed. 2011; 50: 1
    • 8e Schwab MG, Narita A, Hernandez Y, Balandina T, Mali KS, De Feyter S, Feng X, Müllen K. J. Am. Chem. Soc. 2012; 134: 18169
    • 8f Chen L, Hernandez Y, Feng X, Müllen K. Angew. Chem. Int. Ed. 2012; 51: 7640
    • 9a Okada S, Matsuda H, Masaki A, Nakanishi H, Hayamizu K. Chem. Lett. 1990; 2213
    • 9b Okada S, Hayamizu K, Matsuda H, Masaki A, Minami N, Nakanishi H. Macromolecules 1994; 27: 6259
    • 9c Sarkar A, Okada S, Komatsu K, Nakanishi H, Matsuda H. Macromolecules 1998; 31: 5624
    • 9d Fowler FW, Lauher JW. J. Phys. Org. Chem. 2000; 13: 850
    • 9e Sarkar A, Okada S, Matsuzawa H, Matsuda H, Nakanishi H. J. Mater. Chem. 2000; 10: 819
    • 9f Xiao J, Yang M, Lauher JW, Fowler FW. Angew. Chem. Int. Ed. 2000; 39: 2132
    • 9g Lauher JW, Fowler FW, Goroff NS. Acc. Chem. Res. 2008; 41: 1215
    • 10a Ding L, Olesik SV. Nano Lett. 2004; 4: 2271
    • 10b Ding L, Olesik SV. Chem. Mater. 2005; 17: 2353
    • 10c Zhou N, Merschrod EF, Zhao Y. J. Am. Chem. Soc. 2005; 127: 14154
    • 11a Dawn S, Dewal MB, Sobransingh D, Paderes MC, Wibowo AC, Smith MD, Krause JA, Pellechia PJ, Shimizu LS. J. Am. Chem. Soc. 2011; 133: 7025
    • 11b Hsu T.-J, Fowler FW, Lauher JW. J. Am. Chem. Soc. 2012; 134: 142
  • 12 Szilluweit R, Hoheisel TN, Fritzsche M, Ketterer B, Morral AF, Demurtas D, Laporte V, Verel R, Bolisetty S, Mezzenga R, Frauenrath H. Nano Lett. 2012; 12: 2573
    • 13a Wegner G. Z. Naturforsch., B 1969; 24: 824
    • 13b Wegner G. Makromol. Chem. 1972; 154: 35
  • 14 Fowler FW, Lauher JW In Carbon-Rich Compounds . Haley MM, Tykwinski RR. Wiley-VCH; Weinheim: 2006. Chap. 5
    • 15a Ahn DJ, Kim JM. Acc. Chem. Res. 2008; 41: 805
    • 15b Lifshitz Y, Golan Y, Konovalov O, Berman A. Langmuir 2009; 25: 4469
    • 15c Ahn DJ, Lee S, Kim JM. Adv. Funct. Mater. 2009; 19: 1483
    • 15d Yoon B, Lee S, Kim JM. Chem. Soc. Rev. 2009; 38: 1958
    • 15e Yarimaga O, Jaworski J, Yoon B, Kim JM. Chem. Commun. 2012; 48: 2469
    • 16a Sonoda M, Itahashi K, Tobe Y. Tetrahedron Lett. 2002; 43: 5269
    • 16b Umeda R, Fukuda H, Miki K, Rahman SM. A, Sonoda M, Tobe Y. C. R. Chim. 2009; 12: 378
    • 16c Rahman SM. A, Sonoda M, Itahashi K, Tobe Y. Org. Lett. 2003; 5: 3411
    • 17a Tinnemans AH. A, Laarhoven WH. Tetrahedron Lett. 1973; 11: 817
    • 17b Tinnemans AH. A, Laarhoven WH. J. Chem. Soc., Perkin Trans. 2 1976; 1104
    • 17c Tinnemans AH. A, Laarhoven WH. J. Chem. Soc., Perkin Trans. 2 1976; 1111
    • 17d Kaafarani BR, Neckers DC. Tetrahedron Lett. 2001; 42: 4099
    • 17e Zimmermann G. Eur. J. Org. Chem. 2001; 457
    • 17f Kaafarani BR, Wex B, Krause BauerJ. A, Neckers DC. Tetrahedron Lett. 2002; 43: 8227
    • 17g Xu J, Wang Y, Burton DJ. Org. Lett. 2006; 8: 2555
    • 18a Bloor D. Chem. Phys. Lett. 1976; 42: 174
    • 18b Matsuda H, Nakanishi H, Kato S.-I. J. Polym. Sci., Part A: Polym. Chem. 1987; 25: 1663
    • 18c Okada S, Ohsugi M, Masaki A, Matsuda H, Takaragi S, Nakanishi H. Mol. Cryst. Liq. Cryst. 1990; 183: 81
    • 18d Zhang Y, Wada T, Sasable H, Wen J. J. Fluorine Chem. 1996; 77: 27
    • 18e Zhang Y, Wang L, Wada T, Sasabe H, Wen J. J. Fluorine Chem. 1996; 77: 97
    • 18f Coates GW, Dunn AR, Henling LM, Dougherty DA, Grubbs RH. Angew. Chem. Int. Ed. Engl. 1997; 36: 248
    • 18g Singh BP, Nampoothiri AV. V, Kundu T, Puntambekar PN, Saha D, Dhanabalan A, Talwar SS. Europhys. Lett. 1999; 45: 456
    • 18h Sarkar A, Okada S, Matsuzawa H, Matsuda H, Nakanishi H. J. Mater. Chem. 2000; 10: 819
    • 18i Matsuo H, Okada S, Nakanishi H, Matsuda H, Takaragi S. Polym. J. 2002; 34: 825
    • 18j Hasegawa T, Haraguchi S, Numata M, Li C, Bae A.-H, Fujisawa T, Kaneko K, Sakurai K, Shinkai S. Org. Biomol. Chem. 2005; 3: 4321
    • 18k Li Z, Fowler FW, Lauher JW. J. Am. Chem. Soc. 2009; 131: 634
    • 18l Diegelmann SR, Hartman N, Markovic N, Tovar JD. J. Am. Chem. Soc. 2012; 134: 2028

      For examples of the topochemical polymerization of buta-1,3-diyne derivatives in organogels, see:
    • 19a Nagasawa J, Kudo M, Hayashi S, Tamaoki N. Langmuir 2004; 20: 7907
    • 19b Aoki K, Kudo M, Tamaoki N. Org. Lett. 2004; 6: 4009
    • 19c Shirakawa M, Fujita N, Shinkai S. J. Am. Chem. Soc. 2005; 127: 4164
    • 19d Dautel OJ, Robitzer M, Lère-Porte J.-P, Serein-Spirau F, Moreau JJ. E. J. Am. Chem. Soc. 2006; 128: 16213
    • 19e Fujita N, Sakamoto Y, Shirakawa M, Ojima M, Fuji A, Ozaki M, Shinkai S. J. Am. Chem. Soc. 2007; 129: 4134
    • 19f Jahnke E, Weiss J, Neuhaus S, Hoheisel TN, Frauenrath H. Chem. Eur. J. 2009; 15: 388
    • 19g Nagasawa J, Yoshida M, Tamaoki N. Eur. J. Org. Chem. 2011; 2247
  • 20 Néabo JR, Tohoundjona KI. S, Morin J.-F. Org. Lett. 2011; 13: 1358
  • 21 Néabo JR, Vigier-Carrière C, Rondeau-Gagné S, Morin J.-F. Chem. Commun. 2012; 48: 10144
  • 22 Néabo JR, Rondeau-Gagné S, Vigier-Carrière C, Morin J.-F. Langmuir 2013; 29: 3446
  • 23 Suzuki M, Comito A, Khan SI, Rubin Y. Org. Lett. 2010; 12: 2346
  • 24 Cantin K, Rondeau-Gagné S, Néabo JR, Daigle M, Morin J.-F. Org. Biomol. Chem. 2011; 9: 4440
  • 25 Rondeau-Gagné S, Néabo JR, Desroches M, Larouche J, Brisson J, Morin J.-F. J. Am. Chem. Soc. 2013; 135: 110
  • 26 Shimura H, Yoshio M, Kato T. Org. Biomol. Chem. 2009; 7: 3205
    • 27a Zhang L, Che Y, Moore JS. Acc. Chem. Res. 2008; 41: 1596
    • 27b Vollmeyer J, Jester S.-S, Eberhagen F, Prangenberg T, Mader W, Höger S. Chem. Commun. 2012; 48: 6547
    • 27c Zhao D, Moore JS. Chem. Commun. 2003; 807
    • 27d Shetty SS, Zhang J, Moore JS. J. Am. Chem. Soc. 1996; 118: 1019
    • 27e Tobe Y, Utsumi N, Kawabata K, Nagano A, Adachi K, Araki S, Sonoda M, Hirose K, Naemura K. J. Am. Chem. Soc. 2002; 124: 5350
    • 27f Naddo N, Che Y, Zhang W, Balakrishnan K, Yang X, Zhao J, Moore JS, Zang L. J. Am. Chem. Soc. 2007; 129: 6978
    • 27g Balakrishnan K, Datar A, Zhang W, Yang X, Naddo T, Huang J, Zuo J, Yen M, Moore JS, Zang L. J. Am. Chem. Soc. 2006; 128: 6576

      For examples, see:
    • 28a Siemens P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
    • 28b Zhang W, Moore JS. Angew. Chem. Int. Ed. 2006; 45: 4416
    • 28c Grave C, Schlüter AD. Eur. J. Org. Chem. 2002; 3075
  • 29 Rondeau-Gagné S, Néabo JR, Desroches M, Cantin K, Soldera A, Morin J.-F. J. Mater. Chem. C 2013; 1: 2680
  • 30 Rondeau-Gagné S, Néabo JR, Desroches M, Levesque I, Daigle M, Cantin K, Morin J.-F. Chem. Commun. 2013; DOI: 10.1039/C3CC43177K
  • 31 Lysenko S, Volbeda J, Jones PG, Tamm M. Angew. Chem. Int. Ed. 2012; 51: 6757