Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(19): 2535-2539
DOI: 10.1055/s-0033-1339471
DOI: 10.1055/s-0033-1339471
cluster
Guanidine-Catalyzed γ-Selective Morita–Baylis–Hillman Reactions on α,γ-Dialkyl-Allenoates: Access to Densely Substituted Heterocycles
Further Information
Publication History
Received: 27 June 2013
Accepted: 27 June 2013
Publication Date:
26 July 2013 (online)
Abstract
N-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) was discovered as an excellent catalyst for the Morita–Baylis–Hillman reaction for previously hard-to-activate α,γ-dialkyl allenoate substrates. The obtained densely substituted allenic alcohols, which are generally inaccessible with other Lewis base catalysts, could be further converted into 2,5-dihydrofuran and 2H-pyran-2-one heterocyclic structures with challenging substitution patterns.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1 Superbases for Organic Synthesis . Ishikawa T. John Wiley and Sons; Chichester: 2009
- 2 Caubere P. Chem. Rev. 1993; 93: 2317
- 3a Selig P. Synthesis 2013; 45: 703
- 3b Terada M. J. Synth. Org. Chem. Jpn. 2010; 68: 1159
- 3c Ishikawa T. Chem. Pharm. Bull. 2010; 58: 1555
- 3d Leow D, Tan C.-H. Chem. Asian J. 2009; 4: 488
- 4a Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
- 4b Fu X, Tan C.-H. Chem. Commun. 2011; 47: 8210
- 5a Coles MP. Chem. Commun. 2009; 3659
- 5b Kiesewetter MK, Scholten MD, Kirn N, Weber RL, Hedrick JL, Waymouth RM. J. Org. Chem. 2009; 74: 9490
- 6 Maji B, Stephenson DS, Mayr H. ChemCatChem 2012; 4: 993
- 7 Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
-
8a Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074 ; Angew. Chem.
2012, 124, 3128
- 8b Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 8c Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 9a Fan YC, Kwon O In Asymmetric Organocatalysis . List B. Thieme; Stuttgart: 2012: 723
- 9b Marinetti A, Voituriez A. Synlett 2010; 174
- 9c Ye L.-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37: 1140
- 9d Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560 ; Angew. Chem.; 2008, 120, 1584
- 9e Methot JL, Roush WilliamR. Adv. Synth. Catal. 2004; 346: 1035
- 10a Xu S, Zhou L, Zeng S, Ma R, Wang Z, He Z. Org. Lett. 2009; 11: 3498
- 10b Xu S, Zhou L, Ma R, Song H, He Z. Chem. Eur. J. 2009; 15: 8698
- 10c Ma R, Xu S, Tang X, Wu G, He Z. Tetrahedron 2011; 67: 1053
- 10d Li E, Huang Y, Liang L, Xie P. Org. Lett. 2013; 15: 3138
- 11a Xu S, Zhou L, Ma R, Song H, He Z. Org. Lett. 2010; 12: 544
- 11b Xu S, Zou W, Wu G, Song H, He Z. Org. Lett. 2010; 12: 3556
- 11c Wang T, Ye S. Org. Lett. 2010; 12: 4168
- 11d Khong SN, Tran YS, Kwon O. Tetrahedron 2010; 66: 4760
- 11e Martin TJ, Vakhshori VG, Tran YS, Kwon O. Org. Lett. 2011; 13: 2586
- 12a Tsuboi S, Kuroda H, Takatsuka S, Fukawa T, Sakai T, Utaka M. J. Org. Chem. 1993; 58: 5952
- 12b Zhu X.-F, Henry CE, Wang J, Dudding T, Kwon O. Org. Lett. 2005; 7: 1387
- 12c Zhu X.-F, Schaffner A.-P, Li RC, Kwon O. Org. Lett. 2005; 7: 2977
- 12d Creech GS, Kwon O. Org. Lett. 2008; 10: 429
- 12e Creech GS, Zhu X.-F, Fonovic B, Dudding T, Kwon O. Tetrahedron 2008; 64: 6935
- 13a Selig P, Turočkin A, Raven W. Adv. Synth. Catal. 2013; 355: 297
- 13b Selig P, Turočkin A, Raven W. Chem. Commun. 2013; 49: 2930
- 14 We intentionally avoid the expression ‘vinylogous Morita–Baylis–Hillman reaction’, as this term is now generally used to describe the related Rauhut–Currier reaction. For a review, see: Aroyan CE, Dermenci A, Miller SJ. Tetrahedron 2009; 65: 4069
-
15 For the synthesis of similar products by Brønsted base catalysis, see: Xu B, Hammond GB. Angew. Chem. Int. Ed. 2008; 47: 689 ; Angew. Chem. 2008, 120, 701
- 16 Zhao G.-L, Shi M. Org. Biomol. Chem. 2005; 3: 3686
- 17a Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 6295
- 17b Chinnagolla RK, Jeganmohan M. Chem. Commun. 2012; 48: 2030
- 18 For a recent review, see: Krause N. In Innovative Catalysis in Organic Chemistry . Andersson PG. Wiley-VCH; Weinheim: 2012: 195
- 19 Marshall JA, Sehon CA. J. Org. Chem. 1995; 60: 5966
- 20 Gockel B, Krause N. Org. Lett. 2006; 8: 4485
- 21a CCDC-945270 contains the supplementary crystallog-raphic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
- 21b Spek AL. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009; 65: 148
- 22a Vara Prasad JV. N, Para KS, Lunney EA, Ortwine DF, Dunbar Jr. JB, Ferguson D, Tummino PJ, Hupe D, Tait BD, Domagala CH, Humblet C, Bhat TN, Liu B, Guerin DM. A, Baldwin ET, Erickson JW, Sawyer TK. J. Am. Chem. Soc. 1994; 116: 6989
- 22b Kanai A, Kamino T, Kuramochi K, Kobayashi S. Org. Lett. 2003; 5: 2837
For recent reviews, see:
For reviews on allenoate activations, see:
For selected reviews on phosphine catalysis, see:
For examples regarding umpolung reactions of γ-alkyl allenoates, see:
For examples regarding umpolung reactions of α-alkyl allenoates, see:
For examples of the diverse bioactivity of 2-pyranones, see: