Synlett 2013; 24(14): 1809-1812
DOI: 10.1055/s-0033-1339337
letter
© Georg Thieme Verlag Stuttgart · New York

Gold-Catalyzed Intermolecular Oxidation of Terminal Alkynes: Simple and Efficient Synthesis of α-Mesyloxy Ketones

Longyong Xie
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88821742   Email: wmhe@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
,
Zhiwu Liang
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88821742   Email: wmhe@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
,
Dong Yan
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88821742   Email: wmhe@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
b   Hunan Chemical Industry Vocation Technology Institute, Zhuzhou 412004, P. R. of China
,
Weimin He*
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88821742   Email: wmhe@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
,
Jiannan Xiang*
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88821742   Email: wmhe@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 21 April 2013

Accepted after revision: 10 June 2013

Publication Date:
01 August 2013 (online)


Abstract

A variety of terminal alkynes were efficiently converted into the corresponding α-mesyloxy ketones through gold-catalyzed intermolecular oxidation in the presence of 3,5-dichloropyridine N-oxide as the oxidant. The reaction is proposed to proceed via α-oxo gold carbene intermolecular O–H insertion.

Supporting Information

 
  • References and Notes

    • 2a Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 2b Shen HC, Graham TH. Drug Discovery Today: Technol. 2013; 10: e3
    • 3a Yan B, Liu Y. Org. Lett. 2007; 9: 4323
    • 3b Marion N, Ramón RS, Nolan SP. J. Am. Chem. Soc. 2009; 131: 448
    • 3c López-Carrillo V, Echavarren AM. J. Am. Chem. Soc. 2010; 132: 9292
    • 3d Mukherjee A, Dateer RB, Chaudhuri R, Bhunia S, Karad SN, Liu R.-S. J. Am. Chem. Soc. 2011; 133: 15372
    • 3e Brenzovich WE. Angew. Chem. Int. Ed. 2012; 51: 8933
    • 3f Shi S, Wang T, Yang W, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2013; 19: 6576
  • 4 Creary X. Acc. Chem. Res. 1985; 18: 3
  • 5 Takechi A, Takikawa H, Miyake H, Sasaki M. Chem. Lett. 2006; 35: 128
    • 6a Wessig P, Mühling O. Angew. Chem. Int. Ed. 2001; 40: 1064
    • 6b Wessig P, Mühling O. Helv. Chim. Acta 2003; 86: 865
    • 6c Wessig P, Glombitza C, Müller G, Teubner J. J. Org. Chem. 2004; 69: 7582
    • 6d Muehling O, Wessig P. Photochem. Photobiol. Sci. 2006; 5: 1000
  • 7 Barrett DG, Liang G.-B, McQuade DT, Desper JM, Schladetzky KD, Gellman SH. J. Am. Chem. Soc. 1994; 116: 10525
  • 8 Wessig P, Teubner J. Synlett 2006; 1543
  • 9 Lee JC, Choi Y. Tetrahedron Lett. 1998; 39: 3171
  • 10 Khanna MS, Garg CP, Kapoor RP. Synlett 1992; 393
  • 11 Lodaya JS, Koser GF. J. Org. Chem. 1988; 53: 210
  • 12 Lai C, Xi C, Jiang Y, Hua R. Tetrahedron Lett. 2005; 46: 513
    • 13a Ye L, Cui L, Zhang G, Zhang LJ. Am. Chem. Soc. 2010; 132: 3258
    • 13b Ye L, He W, Zhang L. J. Am. Chem. Soc. 2010; 132: 8550
    • 13c Lu B, Li C, Zhang L. J. Am. Chem. Soc. 2010; 132: 14070
    • 13d Ye L, He W, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 3236
    • 13e Qian D, Zhang J. Chem. Commun. 2011; 47: 11152
    • 13f He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 13g Qian D, Zhang J. Chem. Commun. 2012; 48: 7082
    • 13h He W, Xie L, Xu Y, Xiang J, Zhang L. Org. Biomol. Chem. 2012; 10: 3168
    • 13i Dateer RB, Pati K, Liu R.-S. Chem. Commun. 2012; 48: 7200
    • 13j Luo Y, Ji K, Li Y, Zhang L. J. Am. Chem. Soc. 2012; 134: 17412
    • 13k Wang Y, Ji K, Lan S, Zhang L. Angew. Chem. Int. Ed. 2012; 51: 1915
    • 13l Xu M, Ren T.-T, Li C.-Y. Org. Lett. 2012; 14: 4902
    • 13m Fu J, Shang H, Wang Z, Chang L, Shao W, Yang Z, Tang Y. Angew. Chem. Int. Ed. 2013; 52: 4198
    • 14a Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
    • 14b Cui L, Zhang G, Peng Y, Zhang L. Org. Lett. 2009; 11: 1225
    • 14c Cui L, Li C, Zhang L. Angew. Chem. Int. Ed. 2010; 49: 9178
    • 15a Yeom H.-S, Lee J.-E, Shin S. Angew. Chem. Int. Ed. 2008; 47: 7040
    • 15b Yeom H.-S, Lee Y, Jeong J, So E, Hwang S, Lee J.-E, Lee SS, Shin S. Angew. Chem. Int. Ed. 2010; 49: 1611
    • 16a Li G, Zhang L. Angew. Chem. Int. Ed. 2007; 46: 5156
    • 16b Shapiro ND, Toste FD. J. Am. Chem. Soc. 2007; 129: 4160
    • 16c Davies PW, Albrecht SJ. C. Angew. Chem. Int. Ed. 2009; 48: 8372
    • 16d Yeom H.-S, Shin S. Org. Biomol. Chem. 2013; 11: 1089

      For some gold-catalyzed oxidative reactions, the possible alkenyl gold mechanism was also proposed, see:
    • 17a Cuenca AB, Montserrat S, Hossain KM, Mancha G, Lledós A, Medio-Simón M, Ujaque G, Asensio G. Org. Lett. 2009; 11: 4906
    • 17b Li C.-W, Pati K, Lin G.-Y, Sohel SM. A, Hung H.-H, Liu R.-S. Angew. Chem. Int. Ed. 2010; 49: 9891
    • 17c Xu C.-F, Xu M, Jia Y.-X, Li C.-Y. Org. Lett. 2011; 13: 1556
    • 17d Noey EL, Luo Y, Zhang L, Houk KN. J. Am. Chem. Soc. 2012; 134: 1078
    • 17e Bhunia S, Ghorpade S, Huple DB, Liu R.-S. Angew. Chem. Int. Ed. 2012; 51: 2939
    • 17f Wang K.-B, Ran R.-Q, Xiu S.-D, Li C.-Y. Org. Lett. 2013; 15: 2374
    • 17g Shi S, Wang T, Yang W, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2013; 19: 6576
  • 18 Xiao J, Li X. Angew. Chem. Int. Ed. 2011; 50: 7226
  • 19 Use of 1-methyl-2-ethynylbenzene as the substrate gave 2,3-dihydro-1H-inden-1-one, see ref. 17e. Use of 1-methoxy-2-ethynylbenzene as the substrate gave benzofuran-3(2H)-one, see ref. 13m.
  • 20 Shinada T, Kawakami T, Sakai H, Takada I, Ohfune Y. Tetrahedron Lett. 1998; 39: 3757
  • 21 General Procedure N-Oxide 4f (0.39 mmol, 63.96 mg), MsOH (0.36 mmol, 34.60 mg) and Cy3PAuNTf2 (11.1 mg, 0.015 mmol) were added to a solution of the alkyne 1 (0.30 mmol) in chlorobenzene (6 mL) at r.t. The reaction mixture was stirred at r.t., and the progress of the reaction was monitored by TLC. The reaction typically took 8 h. Upon completion, the mixture was concentrated, and the residue was purified by chromatography on silica gel (eluent: hexanes–EtOAc) to afford the desired product 2. 2-Oxo-2-phenylethyl Methanesulfonate (2a) Compound 2a was prepared in 79% yield according to the general procedure and its spectroscopic data match well with with those reported. 1H NMR (400 MHz, CDCl3): δ = 7.90 (d, J = 8.0 Hz, 2 H), 7.66 (t, J = 8.0 Hz, 1 H), 7.52 (t, J = 8.0 Hz, 2 H), 5.53 (s, 2 H), 3.30 (s, 3 H). 13C NMR (100 Mz, CDCl3): δ = 191.09, 134.41, 133.45, 129.04, 127.76, 70.19, 39.15. IR (neat): 2956, 1702, 1560, 1338, 1156, 801 cm–1. HRMS (EI): m/z calcd for C9H10O4S: 214.0300; found: 214.0297.