Synlett 2013; 24(11): 1457-1458
DOI: 10.1055/s-0033-1339287
spotlight
© Georg Thieme Verlag Stuttgart · New York

Organoindium Reagents

Atul Kumar Singh
Green Synthesis Lab, Department of Chemistry, University of ­Allahabad, Allahabad 211 001, Uttar Pradesh, India   Email: atulkumarsingh@hotmail.co.in
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2013 (online)

Dedicated to my parents and my honorable mentor, Professor Lal Dhar S. Yadav.

Introduction

From several decades, indium compounds have attracted the attention of a great number of research groups due to their broad chameleonic behavior. These versatile reagents are widely used in organic chemistry as reducing agents,[1] radical initiators,[2] and Lewis acid catalysts.[3] In particular, organoindium compounds are versatile, mild, relatively stable, and non-toxic in nature. In these reactions, various sensitive functional groups can be used directly without derivatization. In the context of green chemistry, organoindium reagents can undergo reactions in water, which is attractive from both economic and environmental standpoints. Organoindium compounds are versatile reagents for allylation, propargylation, allenylation, umpolung of enones, benzylation, arylation, alkylation, alkenylation and cross-coupling. Apart from these applications, they are also known for Reformatsky, Henry and Barbier-type reactions.[4]

 
  • References

  • 1 Baba A, Shibata I. Chem. Rec. 2005; 5: 323
  • 2 Miyabe H, Naito T. Org. Biomol. Chem. 2004; 2: 1267
  • 3 Singh MS, Raghuvanshi K. Tetrahedron 2012; 68: 8683
    • 4a Babu SA, Yasuda M, Shibata I, Baba A. J. Org. Chem. 2005; 70: 10408
    • 4b Soengas RG, Estévez AM. Tetrahedron Lett. 2012; 53: 570
    • 4c Shanmugam P, Viswambharan B. Synlett 2008; 2763
    • 5a Shen ZL, Wang SY, Chok YK, Xu YH, Loh TP. Chem. Rev. 2013; 113: 271
    • 5b Srivastava VP, Patel R, Yadav LD. S. Adv. Synth. Catal. 2011; 353: 695
    • 5c Behr J.-B, Hottin A, Ndoye A. Org. Lett. 2012; 14: 1536
    • 5d Ranu BC, Das A. Tetrahedron Lett. 2004; 45: 6875
    • 5e Yadav JS, Srinivas D, Reddy GS, Bindu KH. Tetrahedron Lett. 1997; 38: 8745
    • 5f Yoo BW, Choi KH, Lee SJ, Nam GS, Chang KY, Kim SH, Kim JH. Synth. Commun. 2002; 32: 839
    • 5g Yadav JS, Reddy BV. S, Vishnumurthy P, Biswas SK. Tetrahedron Lett. 2007; 48: 6641
    • 5h Peppe C, Nóbrega JA, Drehmer LD, Martins MA. P. Lett. Org. Chem. 2006; 3: 597
    • 6a Haddad TD, Hirayama LC, Buckley JJ, Singaram B. J. Org. Chem. 2012; 77: 889
    • 6b Jin S.-S, Xu M.-H. Adv. Synth. Catal. 2010; 352: 3136
  • 7 Chen YH, Sun M, Knochel P. Angew. Chem. Int. Ed. 2009; 48: 2236
  • 8 Shen ZL, Lai YC, Wong CH. A, Goh KK. K, Yang YS, Cheong HL, Loh TP. Org. Lett. 2011; 13: 422
  • 9 Papoian V, Minehan T. J. Org. Chem. 2008; 73: 7376
    • 10a Auge J, Lubin-Germain N, Seghrouchni L. Tetrahedron Lett. 2002; 43: 5255
    • 10b Picard J, Lubin-Germain N, Uziel J, Auge J. Synthesis 2006; 979
    • 10c Yadav JS, Reddy BV. S, Yadav NN, Singh AP, Choudhary M, Kunwar AC. Tetrahedron Lett. 2008; 49: 6090
    • 10d Sakai N, Kanada R, Hirasawa M, Konakahara T. Tetrahedron 2005; 61: 9298
    • 10e Prajapati D, Sarma R, Bhuyan D, Hu W. Synlett 2011; 627
  • 11 Riveiros R, Saya L, Perez SesteloJ, Sarandeses LA. Eur. J. Org. Chem. 2008; 1959
  • 12 Kang D, Eom D, Kim H, Lee PH. Eur. J. Org. Chem. 2010; 2330