Synlett 2013; 24(10): 1205-1210
DOI: 10.1055/s-0033-1338956
cluster
© Georg Thieme Verlag Stuttgart · New York

Catalytic Redox Amidations of Aldehydes with a Polymer-Supported Peptide–N-Heterocyclic Carbene Multifunctional Catalyst

Chenaimwoyo A. Gondo
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland   Fax: +41(44)6322936   Email: bode@org.chem.ethz.ch
,
Jeffrey W. Bode
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland   Fax: +41(44)6322936   Email: bode@org.chem.ethz.ch
› Author Affiliations
Further Information

Publication History

Received: 12 April 2013

Accepted: 09 May 2013

Publication Date:
17 May 2013 (online)


Abstract

We have prepared an oligomeric histidine-bound N-heterocyclic carbene precursor by coupling a carboxylic acid functionalized 1,2,4-triazolium salt to a peptide using solid-phase peptide synthesis. We have demonstrated that the resulting multifunctional resin-bound catalyst cooperatively facilitates redox amidation reactions of aldehydes and amines, a reaction not catalyzed by N-heterocyclic carbenes alone.

Supporting Information

 
  • References

  • 1 Greenberg A, Breneman CM, Liebman JF. The Amide Linkage, Structural Significance in Chemistry, Biochemistry, and Materials Science. Wiley Interscience; New York: 2000
  • 2 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 3 Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
  • 4 Pattabiraman VR, Bode JW. Nature (London) 2011; 480: 471
    • 5a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 5b Chiang P.-C, Bode JW In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. Díez-González S. RSC Catalysis Series No. 6, Royal Society of Chemistry; Cambridge: 2011: 399-435
    • 5c Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 5d Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 5e Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2295
    • 5f Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 6a Reynolds NT, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2004; 126: 9518
    • 6b Reynolds NT, Rovis T. J. Am. Chem. Soc. 2005; 127: 16406
    • 6c Wheeler P, Vora HU, Rovis T. Chem. Sci. 2013; 4: 1674
  • 7 Sohn SS, Bode JW. Angew. Chem. Int. Ed. 2006; 45: 6021
  • 8 Chow KY. K, Bode JW. J. Am. Chem. Soc. 2004; 126: 8126
  • 9 Vora HU, Rovis T. J. Am. Chem. Soc. 2007; 129: 13796
    • 10a Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
    • 10b Sohn SS, Bode JW. Org. Lett. 2005; 7: 3873
    • 10c Chan A, Scheidt KA. Org. Lett. 2005; 7: 905
    • 11a Chiang P.-C, Kim Y, Bode JW. Chem. Commun. 2009; 4566
    • 11b Chiang P.-C, Rommel M, Bode JW. J. Am. Chem. Soc. 2009; 131: 8714

      For other types of NHC-catalyzed amidations, see:
    • 12a Thai K, Wang L, Dudding T, Bilodeau F, Gravel M. Org. Lett. 2010; 12: 5708
    • 12b Movassaghi M, Schmidt MA. Org. Lett. 2005; 7: 2453
  • 13 Bode JW, Sohn SS. J. Am. Chem. Soc. 2007; 129: 13798
    • 14a Binanzer M, Hsieh S.-Y, Bode JW. J. Am. Chem. Soc. 2011; 133: 19698
    • 14b Hsieh S.-Y, Binanzer M, Kreituss I, Bode JW. Chem. Commun. 2012; 48: 8892
  • 15 Wheeler P, Vora HU, Rovis T. Chem. Sci. 2013; 4: 1674

    • For an examples of cascade catalysis, see:
    • 16a Bruggink A, Schoevaart R, Kieboom T. Org. Process Res. Dev. 2003; 7: 622
    • 16b Simmons B, Walji AM, MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 4349
    • 16c Lathrop SP, Rovis T. J. Am. Chem. Soc. 2009; 131: 13628
    • 16d Carlone A, Cabrera S, Marigo M, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1101
    • 16e Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365

      For examples of synergistic catalysis, see:
    • 17a Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 17b Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
    • 17c Bergonzini G, Vera S, Melchiorr P. Angew. Chem. Int. Ed. 2010; 49: 9685

      For examples of double activation catalysis, see:
    • 18a Hao Xu, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
    • 18b Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336

      For exampes of bifunctional catalysis, see:
    • 19a Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res. 2009; 42: 1117
    • 19b Kanai M, Katob N, Ichikawab E, Shibasaki M. Synlett 2005; 1491
    • 19c Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
    • 19d Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 19e Shibasaki M, Kanai M. Chiral Bifunctional Acid/Base Catalysts. In New Frontiers in Asymmetric Catalysis. Mikami K, Lautens M. John Wiley and Sons; New Jersey: 2006. Chap. 13, 383-411
    • 19f Franzén J, Fisher A. Angew. Chem. Int. Ed. 2009; 48: 787
    • 20a Franzén J, Fisher A. Angew. Chem. Int. Ed. 2009; 48: 787
    • 20b Sträter DN, Lipscomb PD. W. N, Klabunde DT, Krebs PD. B. Angew. Chem., Int. Ed. Engl. 1996; 35: 2024
    • 20c Wakil SJ. Biochemistry 1996; 28: 4523
  • 21 For a review on the synthesis of 1,2,4-triazolium salts, see: Gondo CA, Bode JW. Product Class 33: 1,2,4-Triazolium Salts. In Science of Synthesis: Houben Weyl Methods of Molecular Transformations. Aitken RA, Carreira EM, Li JJ, Oestreich M, Weinreb SM, Yus M. Thieme; Stuttgart: 2012: 199-214
  • 23 Kim Y. A Tunable N-Heterocyclic Catalyst for High Throughput Screening for Kinetic Resolution of Amines. University of Pennsylvania; Philadelphia: 2009. Part II
  • 24 Arnold MA, Day KA, Durón SG, Gin DY. J. Am. Chem. Soc. 2006; 128: 13255
  • 25 Struble JR, Bode JW. Org. Synth. 2010; 87: 362
    • 26a Kerr MS, Read de Alaniz JR, Rovis T. J. Org. Chem. 2005; 70: 5725
    • 26b Kerr MS, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2002; 124: 10298
  • 27 Knight RL, Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998; 1891
    • 28a Maurizio B. Recoverable and Recyclable Catalysts. John Wiley and Sons; Chichester: 2009
    • 28b de Vos DE, Vankelecom IF. J, Jacobs PA. Chiral Catalyst Immobilization and Recycling. Wiley-VCH; Weinheim: 2000
    • 28c Kirschning A. Immobilized Catalysts: Solid Phases, Immobilization and Applications. Vol. 242. Springer; Berlin: 2004
    • 29a Vaino AR, Janda KD. J. Comb. Chem. 2000; 2: 579
    • 29b Quarrell R, Claridge TD. W, Weaver GW, Lowe G. Mol. Diversity 1996; 1: 223
    • 30a Kharasch MS, Joshi BS. J. Org. Chem. 1952; 22: 1439
    • 30b De Sarkar S, Grimme S. J. Am. Chem. Soc. 2010; 132: 1190
    • 30c De Sarkar S, Studer A. Org. Lett. 2010; 12: 1992

      For one previous example of an immobilized organocatalytic triazolium salt, see:
    • 31a Zeitler K, Mager I. Adv. Synth. Catal. 2007; 349: 1851

    • For an example of a solid-supported triazolium salt as a ligand, see:
    • 31b Enders D, Gielen H, Breuer K. Molecules Online 1998; 2: 105

    • For other azolium salt derived NHC, see:
    • 31c Barrett AG. M, Love AC, Tedeschi L. Org. Lett. 2004; 6: 3377
    • 31d Powell AB, Suzuki Y, Ueda M, Bielawski CW, Cowley AH. J. Am. Chem. Soc. 2011; 133: 5218
    • 31e Pinaud J, Vignolle J, Gnanou Y, Taton D. Macromolecules 2011; 44: 1900

    • Numerous examples of solid-supported azolium salt derived NHC have been reported as ligands. For a review, see:
    • 31f Sommer WJ, Weck M. Coord. Chem. Rev. 2007; 251: 860