Synthesis 2013; 45(13): 1759-1763
DOI: 10.1055/s-0033-1338875
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Chemoselective and Enantiospecific Suzuki–Miyaura Cross-Couplings of Benzylic Organoboronic Esters

Ben W. Glasspoole
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Fax: +1(613)5336669   Email: cruddenc@chem.queensu.ca
,
Martins S. Oderinde
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Fax: +1(613)5336669   Email: cruddenc@chem.queensu.ca
,
Brandon D. Moore
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Fax: +1(613)5336669   Email: cruddenc@chem.queensu.ca
,
Aurora Antoft-Finch
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Fax: +1(613)5336669   Email: cruddenc@chem.queensu.ca
,
Cathleen M. Crudden*
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Fax: +1(613)5336669   Email: cruddenc@chem.queensu.ca
› Author Affiliations
Further Information

Publication History

Received: 10 May 2013

Accepted: 11 May 2013

Publication Date:
14 June 2013 (online)


This paper is dedicated to Professor Scott E. Denmark, with thanks for his mentorship, his dedication to excellence and his extensive contributions­ to science.

Abstract

The use of potassium carbonate in addition to silver oxide­ is shown to increase the enantiospecificity of the Suzuki–Miyaura­ cross-coupling reaction of chiral secondary benzylic boronic esters. From mechanistic studies, it is shown that the reaction is compatible with Mizoroki–Heck coupling partners, even when they are present in considerable excess. This unique chemoselectivity provides the opportunity to carry out sequential reactions.

 
  • References

  • 1 Wilczynski R, Sneddon LG. J. Am. Chem. Soc. 1980; 103: 2857
    • 2a Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 4695
    • 2b Lata CJ, Crudden CM. J. Am. Chem. Soc. 2010; 132: 131
    • 2c Gonzalez AZ, Roman JG, Gonzalez E, Martinez J, Medina JR, Matos K, Soderquist JA. J. Am. Chem. Soc. 2008; 130: 9218
    • 2d Smith SM, Thacker NC, Takacs JM. J. Am. Chem. Soc. 2008; 130: 3734
    • 2e Vogels CM, Westcott SA. Curr. Org. Chem. 2005; 9: 687
    • 2f Carroll AM, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 2g Blume F, Zemolka S, Fey T, Kranich R, Schmalz HG. Adv. Synth. Catal. 2002; 344: 868
    • 2h Vogels CM, Hayes PG, Shaver MP, Westcott SA. Chem. Commun. 2000; 51
    • 2i Ramachandran PV, Jennings MP, Brown HC. Org. Lett. 1999; 1: 1399
    • 2j Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957
    • 2k Brown JM, Lloyd-Jones GC. J. Am. Chem. Soc. 1994; 116: 866
    • 2l Burgess K, Vanderdonk WA, Westcott SA, Marder TB, Baker RT, Calabrese JC. J. Am. Chem. Soc. 1992; 114: 9350
    • 2m Evans DA, Fu GC, Anderson BA. J. Am. Chem. Soc. 1992; 114: 6679
    • 2n Burgess K, Ohlmeyer MJ. Chem. Rev. 1991; 91: 1179
    • 2o Hayashi T, Matsumoto Y, Ito Y. J. Am. Chem. Soc. 1989; 111: 3426
    • 2p Mannig D, Noth H. Angew. Chem., Int. Ed. Engl. 1985; 24: 878
    • 3a Fernandez E, Maeda K, Hooper MW, Brown JM. Chem. Eur. J. 2000; 6: 1840
    • 3b Fernandez E, Hooper MW, Knight FI, Brown JM. Chem. Commun. 1997; 173
  • 4 Imao D, Glasspoole BW, Laberge VS, Crudden CM. J. Am. Chem. Soc. 2009; 131: 5024
    • 5a Rubina M, Rubin M, Gevorgyan V. J. Am. Chem. Soc. 2003; 125: 7198
    • 5b Luithle JE. A, Pietruszka J. J. Org. Chem. 1999; 64: 8287
    • 5c Wang X.-Z, Deng M.-Z. J. Chem. Soc., Perkin Trans. 1 1996; 2663
    • 6a Dreher SD, Dormer PG, Sandrock DL, Molander GA. J. Am. Chem. Soc. 2008; 130: 9257
    • 6b van den Hoogenband A, Lange JH. M, Terpstra JW, Koch M, Visser GM, Visser M, Korstanje TJ, Jastrzebski JT. B. H. Tetrahedron Lett. 2008; 49: 4122
  • 7 Molander GA, Wisniewski SR. J. Am. Chem. Soc. 2012; 134: 16856
    • 8a Awano T, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 20738
    • 8b Ohmura T, Awano T, Suginome M. J. Am. Chem. Soc. 2010; 132: 13191
  • 9 Lee JC. H, MacDonald R, Hall DG. Nat. Chem. 2011; 3: 894
  • 10 Glasspoole BW, Ghozati K, Moir J, Crudden CM. Chem. Commun. 2012; 48: 1230
  • 11 Partridge BM, Chausset-Boissarie L, Burns M, Pulis AP, Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 11795
  • 12 Molander GA, Ito T. Org. Lett. 2001; 3: 393
  • 13 Glasspoole BW. PhD Dissertation. Queen’s University; Canada: 2011

    • For an example of a system where a Mizoroki–Heck reaction occurs to the exclusion of Suzuki–Miyaura coupling, see:
    • 14a Itami K, Tonogaki K, Ohashi Y, Yoshida J.-I. Org. Lett. 2004; 6: 4093
    • 14b Itami K, Tonogaki K, Nokami T, Ohashi Y, Yoshida J.-I. Angew. Chem. Int. Ed. 2006; 45: 2404
  • 15 Note that Falck reported the use of both silver oxide and potassium carbonate in the coupling of linear alkyl boronic acids, see: Zou G, Krishna Reddy Y, Falck JR. Tetrahedron Lett. 2001; 42: 7213
  • 16 Note that this is not the case for the coupling of allylic boronic esters where only a 2:1 phosphine/Pd ratio is sufficient, see: Chausset-Boissarie, L.; Ghozati, K.; LaBine, E.; Chen, J. L.-Y.; Aggarwal, V. K.; Crudden, C. M. manuscript submitted for publication.
  • 17 The addition of trace amounts of water has been found to increase the yield at the expense of enantiospecificity, even in the presence of potassium carbonate. The use of approximately 300 ppm of degassed water is typically employed in cases where yield is an issue.13 If the yield of the reaction is good, water can be omitted.16 These results will be described in more detail in a future publication.
  • 18 Note that in couplings of 1-iodonaphthalene (1h), the presence of trace amounts of naphthalene were observed, consistent with the possible intermediacy of III, from which reductive elimination produces naphthalene.
  • 19 Hills ID, Netherton MR, Fu GC. Angew. Chem. Int. Ed. 2003; 42: 5749
  • 20 Armarego WL. F, Perrin DD. Purification of Laboratory Chemicals . 4th ed. Pergamon; New York: 1997