Synlett 2013; 24(10): 1291-1297
DOI: 10.1055/s-0033-1338707
letter
© Georg Thieme Verlag Stuttgart · New York

Ugi Four-Component Reaction with Tandem Deprotection, Cyclization and Pictet–Spengler Reaction: A Concise Route to N-Fused Polycyclic Indoledi­ketopiperazine Alkaloid Analogues

Vikas Tyagi
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226 001, India   eMail: premsc58@hotmail.com   eMail: prem_chauhan_2000@yahoo.com
,
Shahnawaz Khan
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226 001, India   eMail: premsc58@hotmail.com   eMail: prem_chauhan_2000@yahoo.com
,
Prem M. S. Chauhan*
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226 001, India   eMail: premsc58@hotmail.com   eMail: prem_chauhan_2000@yahoo.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 19. März 2013

Accepted after revision: 12. April 2013

Publikationsdatum:
08. Mai 2013 (online)


Abstract

Aza-fused polycyclic indolediketopiperazine alkaloids are of potential interest due to their broad range of biological activities. Traditionally, a number of methods have been used to generate N-fused polycyclic indolediketopiperazine skeletons, but the need to develop novel, concise methods with which to modify the substitution pattern continues. Herein, we describe the two-step formation of N-fused polycyclic indolediketopiperazine alkaloid analogues by the application of the Ugi four-component reaction with tandem deprotection, cyclization and Pictet–Spengler reaction.

Supporting Information

 
  • References and Notes

    • 1a Movassaghi M, Schmidt MA, Ashenhurst JA. Angew. Chem. Int. Ed. 2008; 47: 1485
    • 1b Springer JP, Dchi GB, Kobbe B, Demain AL, Clardy J. Tetrahedron Lett. 1977; 2403
    • 1c Barrow CJ, Cai P, Snyder JK, Sedlock DM, Sun HH, Cooper R. J. Org. Chem. 1993; 58: 6016
    • 1d Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Nat. Chem. Biol. 2005; 1: 143
    • 1e Zhang Y.-X, Chen Y, Guo X.-N, Zhang X.-W, Zhao W.-M, Zhong L, Zhou J, Xi Y, Lin L.-P, Ding J. Anti-Cancer Drugs 2005; 16: 515
    • 1f Kato N, Suzuki H, Takagi H, Asami Y, Kakeya H, Uramoto M, Usui T, Takahashi S, Sugimoto Y, Osada H. ChemBioChem 2009; 10: 920
    • 1g Barrow JC, Musza LL, Cooper R. Bioorg. Med. Chem. Lett. 1995; 5: 377
    • 1h Popp JL, Musza LL, Barrow CJ, Rudewicz PJ, Houck DR. J. Antibiot. 1994; 47: 411
    • 1i Oleynek JJ, Sedlock DM, Barrow CJ, Appell KC, Casiano F, Haycock D, Ward SJ, Kaplita P, Gillum AM. J. Antibiot. 1994; 47: 399
    • 1j Sedlock DM, Barrow CJ, Brownell JE, Hong A, Gillum AM, Houck PR. J. Antibiot. 1994; 47: 391
    • 1k Shigematsu N, Hayashi K, Kayakiri N, Takase S, Hashimoto M, Tanaka H. J. Org. Chem. 1993; 58: 170
    • 1l Vaught JL. Life Sci. 1988; 43: 1419
    • 1m Pernow B. Pharmacol. Rev. 1983; 35: 85
    • 2a Kodato S, Nakagawa M, Hongu M, Kawate T, Tohru H. Tetrahedron 1988; 44: 359
    • 2b Limbach M, Surayakanta D, Janssen A, Es-Sayed M, Magull JM, de Meijere A. Eur. J. Org. Chem. 2005; 610
    • 2c Daugan A, Grondin P, Ruault C, Le Monnier de Gouville A.-C, Coste H, Linget JM, Kirilovsky J, Hyafil F, Labaudinière R. J. Med. Chem. 2003; 46: 4533
    • 2d Beghyn TB, Charton J, Leroux F, Laconde G, Bourin A, Cos P, Maes L, Deprez B. J. Med. Chem. 2011; 54: 3222
    • 2e Takase S, Iwami M, Ando T, Okamoto M, Yoshida K, Horiai H, Kohsaka M, Aoki H, Imanaka H. J. Antibiot. 1984; 37: 1320
    • 2f Hayashi H, Fujiwara T, Murao S, Arai M. Agric. Biol. Chem. 1991; 55: 3143
    • 3a Schkeryantz JM, Woo JC. G, Siliphaivanh P, Depew KM, Danishefsky SJ. J. Am. Chem. Soc. 1999; 121: 11964
    • 3b Coste A, Toumi M, Wright K, Razafimahaléo V, Couty F, Marrot J, Evano GW. Org. Lett. 2008; 10: 3841
    • 3c Wang H, Usui T, Osada H, Ganesan A. J. Med. Chem. 2000; 43: 1577
    • 3d Zhao L, May JP, Huang J, Perrin DM. Org. Lett. 2012; 14: 90
    • 4a Ma Z, Xiang Z, Luo T, Lu K, Xu Z, Chen J, Yang Z. J. Comb. Chem. 2006; 8: 69
    • 4b Ilyin A, Kysil V, Krasavin M, Kurashvili I, Ivachtchenko AV. J. Org. Chem. 2006; 71: 9544
    • 4c Riva R, Banfi L, Basso A, Cerulli V, Guanti G, Pani M. J. Org. Chem. 2010; 15: 5134
    • 4d Guchhait SK, Madaan C. Org. Biomol. Chem. 2010; 8: 3631
    • 4e Erb W, Neuville L, Zhu J. J. Org. Chem. 2009; 74: 3109
    • 4f El Kaïm L, Gizzi M, Grimaud L. Org. Lett. 2008; 10: 3417
    • 4g Sunderhaus JD, Dockendorff C, Martin SF. Org. Lett. 2007; 9: 4223
    • 4h El Kaïm L, Grimaud L, Wagschal S. J. Org. Chem. 2010; 75: 5343
    • 4i Bonnaterre F, Bois-Choussy M, Zhu J. Org. Lett. 2006; 19: 4351
    • 4j Hulme C, Ma L, Romano JJ, Morton G, Tang S.-Y, Cherrier M.-P, Choi S, Salvino J, Labaudinière R. Tetrahedron Lett. 2000; 41: 1889
    • 4k Gracias V, Moore JD, Djuric SW. Tetrahedron Lett. 2004; 45: 417
    • 4l Zhu J. Eur. J. Org. Chem. 2003; 1133
    • 4m El Kaïm L, Grimaud L, Pravin P. Org. Lett. 2012; 14: 476
    • 4n Zhu D, Xia L, Pan L, Li S, Chen R, Mou Y, Chen X. J. Org. Chem. 2012; 77: 1386
    • 4o Kulsi G, Ghorai A, Chattopadhyay P. Tetrahedron Lett. 2012; 53: 3619
    • 4p Ramazani A, Rezaei A. Org. Lett. 2010; 12: 2852
    • 4q Balalaie S, Bararjanian M, Hosseinzadeh S, Rominger F, Bijanzadeh HR, Wolf E. Tetrahedron 2011; 67: 7294
    • 4r Tsaloev A, Ilyin A, Tkachenko S, Ivachtchenko A, Kravchenko D, Krasavin M. Tetrahedron Lett. 2011; 52: 800
    • 4s Welsch SJ, Umkehrer M, Ross G, Kolb J, Burdack C, Wessjohann LA. Tetrahedron Lett. 2011; 52: 6295
    • 4t Santra S, Andreana PR. J. Org. Chem. 2011; 76: 2261
    • 4u Sanudo M, García-Valverde M, Marcaccini S, Torroba T. Tetrahedron 2012; 68: 2621
    • 5a Wang W, Ollio S, Herdtweck E, Dömling A. J. Org. Chem. 2011; 76: 637
    • 5b Wang W, Herdtweck E, Dömling A. Chem. Commun. 2010; 46: 770
    • 5c Liu H, Dömling A. J. Org. Chem. 2009; 74: 6895
    • 5d Cao H, Liu H, Dömling A. Chem. Eur. J. 2010; 16: 12296
    • 5e El Kaïm L, Gageat M, Gaultier L, Grimud L. Synlett 2007; 500
    • 5f Cano-Herrera M.-A, Miranda LD. Chem. Commun. 2011; 47: 10770
    • 5g Liu H, William S, Herdtweck E, Botros S, Dömling A. Chem. Biol. Drug Des. 2012; 79: 470
    • 5h Lesma G, Cecchi R, Crippa S, Giovanelli P, Meneghetti F, Musolino M, Sacchetti A, Silvani A. Org. Biomol. Chem. 2012; 10: 9004
  • 6 Tyagi V, Khan S, Bajpai V, Gauniyal HM, Kumar B, Chauhan PM. S. J. Org. Chem. 2012; 77: 1414
    • 7a Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 7b Sharma M, Pandey S, Chauhan K, Sharma D, Kumar B, Chauhan PM. S. J. Org. Chem. 2012; 77: 929
    • 7c Porwal S, Chauhan SS, Chauhan PM. S, Shakya N, Verma A, Gupta S. J. Med. Chem. 2009; 52: 5793
    • 7d Sharma R, Pandey AK, Chauhan PM. S. Synlett 2012; 23: 2209
    • 7e Pandey S, Khan S, Singh A, Gauniyal HM, Kumar B, Chauhan PM. S. J. Org. Chem. 2012; 77: 10211
    • 7f Tyagi V, Khan S, Chauhan PM. S. Tetrahedron Lett. 2013; 54: 1279
  • 8 See the Supporting Information.
  • 9 Synthesis of Ugi Products 31a and 31b; General Procedure: To a solution of N-Boc protected l-tryptophan 30 (1 mmol), glycine ester 27 (1 mmol), and paraformaldehyde 29 (1.2 mmol) in methanol (3 mL) was added isocyanide 28 (1 mmol) in a 10 mL reaction glass vial containing a stirring bar. The vial was sealed tightly with a Teflon cap and placed in a microwave cavity (33 W) for 30 min at a pre-selected temperature of 60 °C. After completion of the reaction (indicated by TLC), the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel (hexane–EtOAc) to afford the corresponding products. Synthesis of Cyclized Products 33a–i; General Procedure: The Ugi-4CR products (1 mmol) were dissolved in 10% TFA in DCE (3 mL) and the corresponding aromatic aldehydes (1.5 mmol) were added in a 10 mL reaction glass vial containing a stirring bar, the vial was sealed tightly with a Teflon cap and placed in a microwave cavity for 15 min at a pre-selected temperature of 90 °C. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was evaporated and the residue was neutralized with saturated NaHCO3, extracted with EtOAc (20 mL) and the combined organic layer was washed with water (10 mL) and dried over sodium sulfate. EtOAc was removed under reduced pressure and the crude material was purified by column chromatography (CHCl3–MeOH) to afford the cyclized products 33ai in 61–39% yield. Spectroscopic Data for 33a: Yield: 61%; solid. 1H NMR (300 MHz, CDCl3): δ = 8.14 (s, 1 H), 7.56 (d, J = 7.2 Hz, 1 H), 7.34–7.15 (m, 7 H), 7.05 (s, 1 H), 5.69 (s, 1 H), 4.55–3.98 (m, 4 H), 3.74–3.51 (m, 2 H), 3.09 (t, J = 12.3 Hz, 1 H), 1.37 (s, 9 H); 13C NMR (75 MHz, CDCl3): δ = 166.5, 166.1, 162.2, 137.0, 136.7, 135.2, 130.4, 129.4, 126.5, 123.2, 120.5, 118.8, 111.5, 109.5, 52.8, 52.2, 51.7, 51.2, 50.4, 29.1, 27.8; HRMS (ESI): m/z [M + H]+ calcd for C26H28ClN4O3: 479.1850; found: 479.1842.