Synthesis 2014; 46(12): 1667-1673
DOI: 10.1055/s-0033-1338608
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2,9-Diethynylanthracene Derivatives

Shinji Toyota*
Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan   Fax: +81(86)2569457   Email: stoyo@chem.ous.ac.jp
,
Takahiro Kawakami
Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan   Fax: +81(86)2569457   Email: stoyo@chem.ous.ac.jp
,
Tetsuo Iwanaga
Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan   Fax: +81(86)2569457   Email: stoyo@chem.ous.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 29 January 2014

Accepted after revision: 24 February 2014

Publication Date:
28 March 2014 (online)


Abstract

New fluorescent 2,9-diethynylanthracene derivatives ethynylated at unsymmetrical positions were synthesized. The addition of a (trialkylsilyl)ethynyllithium to 2-chloro-9-anthrone gave the corresponding 2-chloro-9-ethynylanthracene, and subsequent nickel-catalyzed coupling with a (trialkylsilyl)ethynyl Grignard reagent furnished the disilylated derivatives. These compounds were used for the synthesis of various 2,9-bis(phenylethynyl)anthracenes and dianthrylbutadiynes. UV–vis and fluorescence spectra were measured to evaluate the substituent effects on the absorption and emission bands.

Supporting Information

 
  • References

    • 1a Yoshizawa M, Klosterman JK. Chem. Soc. Rev. 2014; 43: 1885
    • 1b Toyota S, Iwanaga T. Top. Curr. Chem. 2012; DOI: 10.1007/128_2012_358
    • 2a Levitus M, Garcia-Garibay MA. J. Phys. Chem. 2000; 104: 8632
    • 2b Hanhela PJ, Paul DB. Aust. J. Chem. 1984; 37: 553
    • 2c Hanhela PJ, Paul DB. Aust. J. Chem. 1981; 34: 1669
    • 2d Hanhela PJ, Paul DB. Aust. J. Chem. 1981; 34: 1701
    • 2e Li B, Miao W, Cheng L. Dyes Pigm. 1999; 43: 161
    • 2f Imoto M, Takeda M, Tamaki A, Taniguchi H, Mizuno K. Res. Chem. Intermed. 2009; 35: 957

      For 9,10-DEA units, see:
    • 3a Morisaki Y, Sawamura T, Murakami T, Chujo Y. Org. Lett. 2010; 12: 3188
    • 3b Aoki T, Kaneko T, Teraguchi M. Polymer 2006; 47: 4867
    • 3c Keg P, Dell’Aquila A, Marinelli F, Kapitanchuk OL, Fichou D, Mastrorilli P, Romanazzi G, Suranna GP, Torsi L, Lam YM, Mhaisalkar SG. J. Mater. Chem. 2010; 20: 2448
    • 3d Chen S, Yan Q, Li T, Zhao D. Org. Lett. 2010; 12: 4784
    • 3e Miki K, Fujita M, Inoue Y, Senda Y, Kowada T, Ohe K. J. Org. Chem. 2010; 75: 3537
    • 3f Toyota S, Mamiya D, Yoshida R, Tanaka R, Iwanaga T, Orita A, Otera J. Synthesis 2013; 45: 1060
    • 3g Miyamoto K, Iwanaga T, Toyota S. Chem. Lett. 2010; 39: 288
  • 4 For 1,5-DEA, see: Zhou H, Wuest JD. Langmuir 2013; 29: 7229

    • For 1,8-DEA, see:
    • 5a Kissel P, Schlüter AD, Sakamoto J. Chem. Eur. J. 2009; 15: 8955
    • 5b Chan JM. W, Tischler JR, Kooi SE, Bulović V, Swager TM. J. Am. Chem. Soc. 2009; 131: 5659
    • 5c Kryschenko YK, Seidel SR, Muddiman DC, Nepomuceno AI, Stang PJ. J. Am. Chem. Soc. 2003; 125: 9647
    • 5d Flamigni L, Talarico AM, Ventura B, Rein R, Solladié N. Chem. Eur. J. 2006; 12: 701
    • 6a Yang J, Dass A, Rawashdeh A.-MM, Sotiriou-Leventis C, Panzner MJ, Tyson DS, Kinder JD, Leventis N. Chem. Mater. 2004; 16: 3457
    • 6b Vilà N, Zhong Y.-W, Henderson JC, Abruña HD. Inorg. Chem. 2010; 49: 796
    • 6c Sagara Y, Yamane S, Mutai T, Araki K, Kato T. Adv. Funct. Mater. 2009; 19: 1869
    • 6d Ozawa R, Yoza K, Kobayashi K. Chem. Lett. 2011; 40: 941
    • 6e Hirai K, Hatanaka K, Yamaguchi T, Miyajima A, Kitagawa T, Tomioka H. J. Phys. Org. Chem. 2011; 24: 909
  • 7 Toyota S. Pure Appl. Chem. 2012; 84: 917 ; and references cited therein
    • 8a Goichi M, Segawa K, Suzuki S, Toyota S. Synthesis 2005; 2116
    • 8b Toyota S, Goichi M, Kotani M, Takezaki M. Bull. Chem. Soc. Jpn. 2005; 78: 2214
    • 8c Toyota S, Kawakami T, Shinnishi R, Sugiki R, Suzuki S, Iwanaga T. Org. Biomol. Chem. 2010; 8: 4997
    • 8d Katz HE. J. Org. Chem. 1989; 54: 2179
  • 9 Heo DU, Lee JB, Han YD, Joo J, Lee H, Lee H, Choi DH. Langmuir 2012; 28: 10948
    • 10a Lydon DP, Porres L, Beeby A, Marder TB, Low PJ. New J. Chem. 2005; 29: 972
    • 10b Cui W, Fu Y, Qu Y, Tian H, Zhang J, Xie Z, Geng Y, Wang F. Chem. Asian J. 2010; 5: 932
    • 10c Cui W, Zhang X, Jiang X, Tian H, Yan D, Geng Y, Jing X, Wang F. Org. Lett. 2006; 8: 785
    • 10d Toyota S, Yamamori T, Asakura M, Ōki M. Bull. Chem. Soc. Jpn. 2000; 73: 205
    • 11a Orita A, Otera J. Chem. Rev. 2006; 106: 5387
    • 11b Toyota S, Azami R, Iwanaga T, Matsuo D, Orita A, Otera J. Bull. Chem. Soc. Jpn. 2009; 82: 1287
  • 13 Utz CG, Shechter H. J. Org. Chem. 1985; 50: 5705
  • 14 Toyota S, Shimizu T, Iwanaga T, Wakamatsu K. Chem. Lett. 2011; 40: 312
    • 15a Fu GC. Acc. Chem. Res. 2008; 41: 1555
    • 15b Hundertmark T, Littke AF, Buchwald SL, Fu GC. Org. Lett. 2000; 2: 1729
    • 15c Hirose K, Miura S, Senda Y, Tobe Y. Chem. Commun. 2012; 48: 6052
  • 16 Liu Q, Burton DJ. Tetrahedron Lett. 1997; 38: 4371
  • 17 Watanabe M, Fujita T, Ohashi T. Jpn. Kokai Tokkyo Koho JP 2010248184, 2010 ; Chem. Abstr. 2010, 153, 593742.
  • 18 Lakowicz JR. Principles of Fluorescence Spectroscopy . 3rd ed. Springer; New York: 2006: Chap. 9
  • 19 Henry RA, Bliss DE, Heller CA. J. Chem. Eng. Data 1978; 23: 180