Synthesis 2014; 46(03): 357-367
DOI: 10.1055/s-0033-1338565
paper
© Georg Thieme Verlag Stuttgart · New York

Synthetic Studies towards an Advanced Precursor of the Jatrophane Diterpene Pl-4

Rita Fürst
Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria   Fax: +43(1)427752101   eMail: uwe.rinner@univie.ac.at
,
Christoph Lentsch
Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria   Fax: +43(1)427752101   eMail: uwe.rinner@univie.ac.at
,
Uwe Rinner*
Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria   Fax: +43(1)427752101   eMail: uwe.rinner@univie.ac.at
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 22. Oktober 2013

Accepted after revision: 31. Oktober 2013

Publikationsdatum:
27. November 2013 (online)


Abstract

Jatrophane diterpenes, isolated from members of the Euphorbiaceae­ plant family, constitute a class of biologically and structurally intriguing natural products. Herein, different strategies for the preparation of an advanced intermediate towards the total synthesis of the jatrophane diterpene Pl-4 are described. Key strategies for the elaboration of the jatrophane precursors include hydrometalation and radical reactions.

Supporting Information

 
  • References

  • 1 Graham JG, Quinn ML, Fabricant DS, Farnsworth NR. J. Ethnopharmacol. 2000; 73: 347
  • 2 Kupchan SM, Sigel CW, Matz MJ, Renauld JA. S, Haltiwanger RC, Bryan RF. J. Am. Chem. Soc. 1970; 92: 4476
  • 3 Shi QW, Su XH, Kiyota H. Chem. Rev. 2008; 108: 4295
    • 4a Miglietta A, Gabriel L, Appendino G, Bocca C. Cancer Chemother. Pharmacol. 2003; 51: 67
    • 4b Mucsi I, Molnar J, Hohmann J, Redei D. Planta Med. 2001; 67: 672
    • 4c Vasas A, Redei D, Csupor D, Molnar J, Hohmann J. Eur. J. Org. Chem. 2012; 6996
    • 4d Valente I, Reis M, Duarte N, Serly J, Molnar J, Ferreira MJ. U. J. Nat. Prod. 2012; 75: 1915
    • 5a Smith AB, Lupo AT, Ohba M, Chen K. J. Am. Chem. Soc. 1989; 111: 6648
    • 5b Gyorkos AC, Stille JK, Hegedus LS. J. Am. Chem. Soc. 1990; 112: 8465
    • 5c Han Q, Wiemer DF. J. Am. Chem. Soc. 1992; 114: 7692
    • 5d Matsuura T, Nishiyama S, Yamamura S. Chem. Lett. 1993; 1503
    • 5e Mulzer J, Giester G, Gilbert M. Helv. Chim. Acta 2005; 88: 1560
    • 5f Gilbert M, Galkina A, Mulzer J. Synlett 2004; 2558
    • 5g Helmboldt H, Rehbein J, Hiersemann M. Tetrahedron Lett. 2004; 45: 289
    • 5h Helmboldt H, Köhler D, Hiersemann M. Org. Lett. 2006; 8: 1573
    • 5i Shimokawa K, Takamura H, Uemura D. Tetrahedron Lett. 2007; 48: 5623
    • 5j Lentsch C, Rinner U. Org. Lett. 2009; 11: 5326
    • 5k Fürst R, Lentsch C, Rinner U. Eur. J. Org. Chem. 2013; 2293
    • 5l Schnabel C, Hiersemann M. Org. Lett. 2009; 11: 2555
    • 5m Schnabel C, Sterz K, Muller H, Rehbein J, Wiese M, Hiersemann M. J. Org. Chem. 2011; 76: 512
    • 5n Mohan P, Koushik K, Fuertes MJ. Tetrahedron Lett. 2012; 53: 2730
    • 5o Fürst R, Rinner U. J. Org. Chem. 2013; 78: 8748
  • 6 Hohmann J, Forgo P, Csupor D, Schlosser G. Helv. Chim. Acta 2003; 86: 3386
  • 7 Mahler H, Braun M. Chem. Ber. 1991; 124: 1379
  • 8 Fukuzawa S, Matsuzawa H, Yoshimitsu S. J. Org. Chem. 2000; 65: 1702
  • 9 McDougal PG, Rico JG, Oh YI, Condon BD. J. Org. Chem. 1986; 51: 3388
  • 10 Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
  • 11 Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
  • 12 Jones TK, Reamer RA, Desmond R, Mills SG. J. Am. Chem. Soc. 1990; 112: 2998
    • 13a Stork G, Hudrlik PF. J. Am. Chem. Soc. 1968; 90: 4462
    • 13b Smith AB, Qiu YP, Jones DR, Kobayashi K. J. Am. Chem. Soc. 1995; 117: 12011
    • 14a Muri D, Lohse-Fraefel N, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 4036
    • 14b Larivee A, Unger JB, Thomas M, Wirtz C, Dubost C, Handa S, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 304
    • 14c Wittenberg R, Beier C, Drager G, Jas G, Jasper C, Monenschein H, Kirschning A. Tetrahedron Lett. 2004; 45: 4457
  • 15 For practical reasons, all subsequent steps were carried out using the major S-configured alcohol.
  • 16 Parikh JR, Doering WV. E. J. Am. Chem. Soc. 1967; 89: 5505
  • 17 Williams JD, Kamath VP, Morris PE, Townsend LB. Org. Synth. 2009; 82: 75
  • 18 Nakata M, Arai M, Tomooka K, Ohsawa N, Kinoshita M. Bull. Chem. Soc. Jpn. 1989; 62: 2618
  • 19 For stereochemical assignment by NMR spectroscopy see Supporting Information (S17): After the Grignard reaction with ethynylmagnesium bromide the two vicinal TBS groups were deprotected with TBAF and the resulting diol was cleaved with NaIO4 to afford a mixture of the corresponding lactols which were further oxidized with PCC to give lactone S17.
  • 20 Frantz DE, Fassler R, Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
  • 21 Imamoto T, Kusumoto T, Tawarayama Y, Sugiura Y, Mita T, Hatanaka Y, Yokoyama M. J. Org. Chem. 1984; 49: 3904
  • 22 The stereochemistry of the newly installed hydroxyl moiety was proven by advanced Mosher ester analysis, see Supporting information (S7, S8). All subsequent steps were carried out with the desired S-configured isomer.
  • 23 Marshall JA, Schaaf GM. J. Org. Chem. 2003; 68: 7428
  • 24 Asano M, Inoue M, Watanabe K, Abe H, Katoh T. J. Org. Chem. 2006; 71: 6942
  • 25 Hart DW, Schwartz J. J. Am. Chem. Soc. 1974; 96: 8115
  • 26 Hart DW, Blackburn TF, Schwartz J. J. Am. Chem. Soc. 1975; 97: 679
  • 27 Zhang DH, Ready JM. J. Am. Chem. Soc. 2007; 129: 12088
  • 28 Gao F, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10961
    • 30a Saito N, Sugimura Y, Sato Y. Org. Lett. 2010; 12: 3494
    • 30b Chan J, Jamison TF. J. Am. Chem. Soc. 2004; 126: 10682
    • 30c Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
  • 31 Morlender-Vais N, Solodovnikova N, Marek I. Chem. Commun. 2000; 1849
    • 32a Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
    • 32b Kagan HB. Tetrahedron 2003; 59: 10351
    • 32c Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 32d Molander GA. Chem. Rev. 1992; 92: 29
    • 32e Harb HY, Procter DJ. Synlett 2012; 23: 6
    • 32f Gopalaiah K, Kagan HB. New J. Chem. 2008; 32: 607
  • 33 The stereochemistry of the newly installed hydroxyl moiety was proven by advanced Mosher ester analysis, see the Supporting Information (S9, S10). All subsequent steps were carried out with the desired S-configured isomer.
  • 34 Cohen N, Banner BL, Laurenzano AJ, Carozza L. Org. Synth. 1985; 63: 127
  • 35 For stereochemical assignment by NMR spectroscopy see Supporting Information (S16, S17).
    • 36a Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
    • 36b Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
    • 36c Stewart IC, Ung T, Pletnev AA, Berlin JM, Grubbs RH, Schrodi Y. Org. Lett. 2007; 9: 1589
  • 37 Stereochemistry of the major diastereomer (S20a) could be proven by X-ray crystal structure analysis.
  • 38 Myers AG, McKinstry L. J. Org. Chem. 1996; 61: 2428