Synthesis 2013; 45(23): 3276-3280
DOI: 10.1055/s-0033-1338545
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of (+)-Polyoxamic Acid Starting with a Chiral ­Aziridine

Hojong Yoon
a   Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
,
Taebo Sim*
a   Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
b   KU-KIST Graduate School of Converging Science and Technology, 145, Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea   Fax: +82(2)9585189   Email: tbsim@kist.re.kr
› Author Affiliations
Further Information

Publication History

Received: 27 August 2013

Accepted after revision: 13 September 2013

Publication Date:
26 September 2013 (online)


Abstract

An efficient and stereoselective synthesis of (+)-polyoxamic acid was developed. The route starts with the commercially available 1-(R)-α-methylbenzylaziridine-2-methanol, a substance that has not been used previously as a starting material for the preparation of this target. The route also features the use of a stereocontrolled Sharpless asymmetric dihydroxylation reaction, promoted by AD-mix-α, which is followed by a regioselective aziridine ring-opening process, to generate the basic skeleton of target natural product. Subsequent oxidation and global deprotection produces (+)-polyoxamic acid.

 
  • References

    • 1a Isono K, Asahi K, Suzuki S. J. Am. Chem. Soc. 1969; 91: 7490
    • 1b Isono K, Suzuki S. Heterocycles 1979; 13: 333
    • 2a Naider F, Shenbagamurthi P, Steinfeld AS, Smith HA, Boney C, Becker JM. Antimicrob. Agents Chemother. 1983; 24: 787
    • 2b Shenbagamurthi P, Smith HA, Becker JM, Naider F. J. Med. Chem. 1986; 29: 802
  • 3 Lee YJ, Park Y, Kim MH, Jew SS, Park HG. J. Org. Chem. 2011; 76: 740
  • 4 Trost BM, Krueger AC, Bunt RC, Zambrano J. J. Am. Chem. Soc. 1996; 118: 6520
  • 5 Enders D, Vrettou M. Synthesis 2006; 2155
    • 6a Savage I, Thomas E. J. Chem. Soc., Chem. Commun. 1989; 717
    • 6b Savage I, Thomas EJ, Wilson PD. J. Chem. Soc., Perkin Trans. 1 1999; 3291
  • 7 Kim KS, Lee YJ, Kim JH, Sung DK. Chem. Commun. 2002; 1116
  • 8 Raghavan S, Joseph SC. Tetrahedron Lett. 2003; 44: 6713
  • 9 Matsuura F, Hamada Y, Shioiri T. Tetrahedron Lett. 1994; 35: 733
  • 10 Veeresa G, Datta A. Tetrahedron Lett. 1998; 39: 119
  • 11 Yoon HJ, Kim YW, Lee BK, Lee WK, Kim Y, Ha HJ. Chem. Commun. 2007; 79
  • 12 Righi G, Mandic' E, Naponiello GC. M, Bovicelli P, Tirotta I. Tetrahedron 2012; 68: 2984
  • 13 Lee BK, Choi HG, Roh EJ, Lee WK, Sim T. Tetrahedron Lett. 2013; 54: 553
  • 14 Watson AA, Fleet GW. J, Asano N, Molyneux RJ, Nash RJ. Phytochemistry 2001; 56: 265
  • 15 Choi SK, Lee JS, Kim JH, Lee WK. J. Org. Chem. 1997; 62: 743
  • 16 Andres JM, de Elena N, Pedrosa R. Tetrahedron 2000; 56: 1523
  • 17 Ratcliff R, Rodehors R. J. Org. Chem. 1970; 35: 4000
  • 18 Barfoot CW, Harvey JE, Kenworthy MN, Kilburn JP, Ahmed M, Taylor RJ. K. Tetrahedron 2005; 61: 3403
  • 19 Joo JE, Pham VT, Tian YS, Chung YS, Oh CY, Lee KY, Ham WH. Org. Biomol. Chem. 2008; 6: 1498
  • 20 Dhavale DD, Saha NN, Desai VN. J. Org. Chem. 1997; 62: 7482
  • 21 Tsimilaza A, Tite T, Boutefnouchet S, Lallemand MC, Tillequin F, Husson HP. Tetrahedron: Asymmetry 2007; 18: 1585
  • 22 Saksena AK, Lovey RG, Girijavallabhan VM, Ganguly AK, Mcphail AT. J. Org. Chem. 1986; 51: 5024