Synthesis 2013; 45(18): 2600-2604
DOI: 10.1055/s-0033-1338515
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium(II)-Catalyzed Sequential C−Cl Bond Formation: A Novel and Efficient Method for Direct α,α-Dichlorination of β-Dicarbonyl Compounds

Weibing Liu*
School of Chemistry and Life Science, Guangdong University of Petrochemical Technology, 2 Guangdu Road, Maoming 525000, P. R. of China   Fax: +86(68)2923529   Email: lwb409@gmail.com
,
Liquan Tan
School of Chemistry and Life Science, Guangdong University of Petrochemical Technology, 2 Guangdu Road, Maoming 525000, P. R. of China   Fax: +86(68)2923529   Email: lwb409@gmail.com
,
Peng Zhou
School of Chemistry and Life Science, Guangdong University of Petrochemical Technology, 2 Guangdu Road, Maoming 525000, P. R. of China   Fax: +86(68)2923529   Email: lwb409@gmail.com
,
Cui Chen
School of Chemistry and Life Science, Guangdong University of Petrochemical Technology, 2 Guangdu Road, Maoming 525000, P. R. of China   Fax: +86(68)2923529   Email: lwb409@gmail.com
,
Qing Zhang
School of Chemistry and Life Science, Guangdong University of Petrochemical Technology, 2 Guangdu Road, Maoming 525000, P. R. of China   Fax: +86(68)2923529   Email: lwb409@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 08 May 2013

Accepted after revision: 11 July 2013

Publication Date:
09 August 2013 (online)


Abstract

A simple and concise procedure for the synthesis of 2,2-dichloro-3-oxo-N-phenylbutanamides, via palladium-catalyzed C(sp3)–H dichlorination of 3-oxo-N-phenylbutanamides, is described. The protocol provides a direct route to α,α-dichlorinated products starting from β-dicarbonyl compounds. A plausible mechanism for this transformation involving two consecutive chlorination steps is described.

Supporting Information

 
  • References

  • 1 Mendonça GF, Sindra HC, Almeida LS, Esteves PM, Mattos MC. S. Tetrahedron Lett. 2009; 50: 473
  • 2 Kitamura T, Kuriki S, Morshed MH, Hori Y. Org. Lett. 2011; 13: 2392
  • 3 Yang D, Yan YL, Lui B. J. Org. Chem. 2002; 67: 7429
  • 4 Miller RE, Rantanen T, Ogilvie KA, Groth U, Snieckus V. Org. Lett. 2010; 12: 2198
  • 5 Hamashima Y, Yagi K, Takano H, Tamas L, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 14530
  • 6 Suzuki T, Goto T, Hamashima Y, Sodeoka M. J. Org. Chem. 2007; 72: 246
  • 7 Kwiatkowski P, Beeson TD, Conrad JC, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 1738
  • 8 House HO. Modern Synthetic Reactions . 2nd ed. W. A. Benjamin; New York: 1972
  • 9 Filler R, Kobayashi Y. Biomedical Aspects of Fluorine Chemistry . Elsevier Biomedical; New York: 1982
  • 10 de Kimpe N, Verhé R. The Chemistry of α-Haloketones, α-Haloaldehydes, and α-Haloimines. Wiley; New York: 1990
  • 11 March J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure. 4th ed. John Wiley & Sons; New York: 1992
  • 12 Thomas G. Medicinal Chemistry: An Introduction . John Wiley & Sons; New York: 2000
  • 13 Liu W, Huang XY, Cheng MJ, Nielsen RJ, Goddard III WA, Groves JT. Science 2012; 337: 1322
  • 14 Ahlsten N, Gómez AB, Martín-Matute B. Angew. Chem. Int. Ed. 2013; 52: 6273
  • 15 Ahlsten N, Martín-Matute B. Chem. Commun. 2011; 47: 8331
  • 16 Sun XY, Shan G, Sun YH, Rao Y. Angew. Chem. Int. Ed. 2013; 52: 4440
  • 17 Kundu R, Ball ZT. Org. Lett. 2010; 12: 2460
  • 18 Stowers KJ, Sanford MS. Org. Lett. 2009; 11: 4584
  • 19 Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15570
  • 20 Wu H, Hynes J. Org. Lett. 2010; 12: 1192
  • 21 Halland N, Braunton A, Bachmann S, Marigo M, Jorgensen KA. J. Am. Chem. Soc. 2004; 126: 4790
  • 22 Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 7195
  • 23 Liu WB, Chen C, Zhang Q, Zhu ZB. Beilstein J. Org. Chem. 2011; 7: 1436
  • 24 Liu WB, Chen C, Zhang Q, Zhu ZB. Beilstein J. Org. Chem. 2012; 8: 344
  • 25 Staskun B. J. Org. Chem. 1974; 39: 3494
  • 26 Pierce BJ, Conn S. US Patent 5442115, 1995
  • 27 Ito Y, Aoyama H, Hirao T, Mochizuki A, Saegusa T. J. Am. Chem. Soc. 1979; 101: 494
  • 28 Culkin DA, Hartwig JF. Acc. Chem. Res. 2003; 36: 234
  • 29 Chernyak N, Gorelsky SI, Gevorgyan V. Angew. Chem. Int. Ed. 2011; 50: 2342
  • 30 Metz AE, Berritt S, Dreher SD, Kozlowski MC. Org. Lett. 2012; 14: 760
  • 31 Youn SW, Kim BS, Jagdale AR. J. Am. Chem. Soc. 2012; 134: 11308
  • 32 Kalyani D, Sanford MS. J. Am. Chem. Soc. 2008; 130: 2150
  • 33 Liang Y, Tang S, Zhang XD, Mao LQ, Xie YX, Li JH. Org. Lett. 2006; 8: 3017
  • 34 Li JH, Tang S, Xie YX. J. Org. Chem. 2005; 70: 477
  • 35 Li JH, Liang Y, Xie YX. J. Org. Chem. 2004; 69: 8125
  • 36 El-Qisairi AK, Qaseer HA, Katsigras G, Lorenzi P, Trivedi U, Tracz S, Hartman A, Miller JA, Henry PM. Org. Lett. 2003; 5: 439
  • 37 Newman SG, Howell JK, Nicolaus N, Lautens M. J. Am. Chem. Soc. 2011; 133: 14916
  • 38 Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
  • 39 Bulow C. Justus Liebigs Ann. Chem. 1924; 439: 211
  • 40 Hodgkinson AJ, Staskun B. J. Org. Chem. 1969; 34: 1709