Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2013; 23(03): 135-146
DOI: 10.1055/s-0033-1337977
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Metric Characteristics of the Tests for Dynamic Balance Evaluation

Metrische Eigenschaften von Tests für die Beurteilung der dynamischen Gleichgewichtsfähigkeit
N. Sarabon
1   Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
2   Science and Research Center, Institute for Kinesiology Research, University of Primorska, Koper, Slovenia
3   S2P Ltd., Laboratory for Motor Control and Motor Behaviour, Ljubljana, Slovenia
,
T. Zacirkovnik
2   Science and Research Center, Institute for Kinesiology Research, University of Primorska, Koper, Slovenia
,
J. Rosker
2   Science and Research Center, Institute for Kinesiology Research, University of Primorska, Koper, Slovenia
3   S2P Ltd., Laboratory for Motor Control and Motor Behaviour, Ljubljana, Slovenia
,
S. Loefler
1   Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
› Author Affiliations
Further Information

Publication History

received 07 October 2012

accepted 21 February 2013

Publication Date:
13 June 2013 (online)

Abstract

Different dynamic balance tests help to identify specific balance deficits in elderly and various population groups. In addition, dynamic balance tests have proved useful in identifying potential locomotor-system injury risk factors. These tests differ in the quality of their metric characteristics which could influence their applicability to measure balance in different clinical groups. Reliability, validity, sensitivity and objectivity define metric characteristics of an individual test. This paper provides an overview of the available scientific literature regarding measurement characteristics of the most commonly used dynamic balance tests. Reliability (intra-session, inter-session, inter-tester and intra-tester), sensitivity, validity and ability to predict possible balance impairing trauma and disease are presented. Clinical balance tests (balance assessed by analogue scales), functional reach, star excursion tests and out step tests were most frequently studied for their metric characteristics. In general intra-session reliability proved to be slightly higher than inter-session reliability. On the contrary there is a lack of reports on inter-tester and intra-tester reliability, especially for star excursion tests and for the tests performed on an unstable surface. Tests differ in the validity; possibly resulting from use of different reference standards. In addition factors such as age, fatigue, learning, and anthropometric characteristics have been shown to affect dynamic balance. Majority of tests were successfully implemented in the process of identifying fall prone individuals. However the reports on potential of dynamic balance tests to help predict other lower extremity injury or sports performance are sparse. In general dynamic balance measuring tests (not all parameters) proved to have sufficient metric characteristics for their practical application. However individual parameters and goals of balance assessment should be considered, when choosing the most appropriate test.

Zusammenfassung

Die Verwendung dynamischer Balance Tests ermöglicht die Identifikation spezieller Gleichgewichtsdefizite bei älteren Personen und verschiedenen Bevölkerungsgruppen. Zusätzlich haben dynamische Balance Tests ihre Fähigkeit potenzielle Verletzungsrisiken des Bewegungs­apparates zu erkennen unter Beweis gestellt. Jedoch gibt es Unterschiede in der Qualität der metrischen Eigenschaften und Anwendbarkeit von Gleichgewichtsmessungen in verschiedenen Altersgruppen. Reliabilität, Validität, Sensitivi­tät und Objektivität definieren die metrischen Eigenschaften von individuellen Tests. Diese Arbeit gibt einen Überblick über die vorhandene Literatur bezüglich der Messeigenschaften der meistverwendeten dynamischen Balance Tests. Reliabilität (Intrasession, Test-Retest, Interrater, Intrarater), Sensitivität, Validität und die Fähigkeit mögliche gleichgewichtsbeeinträchtigende Traumata oder Krankheiten prognostizieren zu können werden vorgestellt. Klinische Gleichgewichtstests (bewertet mit analogen Skalen), „Functional Reach“-Tests, Star-Excursion Tests und Schritt auslösende Tests wurden wegen ihrer metrischen Eigenschaften am häufigsten untersucht. Im Allgemeinen zeigt sich eine leicht höhere Intra- als Intersession Reliabilität. Jedoch fehlen Berichte über die Interrater und Intrarater Reliabilität speziell für Star-Excursion Tests und Tests auf labilen Untergründen. Die Validität der Tests unterscheidet sich. Möglicherweise lässt sich dies durch die Verwendung unterschiedlicher Referenzstandards erklären. Zusätzlich hat sich gezeigt, dass Alter, Ermüdung, Lerneffekte und anthropometrische Eigenschaften die dynamische Balance beeinflussen. Die Mehrheit der Tests konnte mögliche Stürze prognostizieren. Allerdings gibt es wenig Berichte über mögliche andere Prognosen (Verletzungen der unteren Extremitäten, sportliche Leistungen). Generell haben Tests für die Beurteilung der dynamischen Gleichgewichtsfähigkeit (wenn auch nicht alle Para­meter) be­wiesen, dass sie ausreichende metrische Eigenschaften be­sitzen. Es sollten jedoch individuelle Parameter und Ziele der angestrebten Balancemessung bei der Wahl eines geeigneten Tests berücksichtigt werden.

 
  • References

  • 1 Hrysomallis C. Balance ability and athletic performance. Sports Med 2011; 41: 221-232
  • 2 Missaoui B, Portero P, Bendaya S et al. Posture and equilibrium in orthopedic and rheumatologic diseases. Neurophysiol Clin 2008; 38: 447-457
  • 3 Marigold DS, Misiaszek JE. Whole-body responses: neural control and implications for rehabilitation and fall prevention. Neuroscientist 2009; 15: 36-46
  • 4 Bloem BR, Grimbergen YAM, Van Dijk JG et al. The “posture second” strategy: a review of wrong priorities in Parkinson’s disease. J Neurol Sci 2006; 248: 196-204
  • 5 Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing 2006; 35 (Suppl 2): ii12-ii18
  • 6 Maki BE, McIlroy WE. Postural control in the older adult. Clin Geriatr Med 1996; 12: 635-658
  • 7 Gage W, Winter D, Frank J et al. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait & Posture 2004; 19: 124-132
  • 8 Winter D. Human balance and posture control during standing and walking. Gait & Posture 1995; 3: 193-214
  • 9 Benvenuti F. Physiology of Human Balance. Advances in Neurology 2001; 87: 41-51
  • 10 Allen NE, Sherrington C, Paul SS et al. Balance and falls in Parkinson’s disease: a meta-analysis of the effect of exercise and motor training. Mov Disord 2011; 26: 1605-1615
  • 11 Weerdesteyn V, De Niet M, Van Duijnhoven HJR et al. Falls in individuals with stroke. J Rehabil Res Dev 2008; 45: 1195-1213
  • 12 Howells BE, Ardern CL, Webster KE. Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc 2011; 19: 1168-1177
  • 13 McKeon PO, Hertel J. Systematic review of postural control and lateral ankle instability, part I: can deficits be detected with instrumented testing. J Athl Train 2008; 43: 293-304
  • 14 Ruhe A, Fejer R, Walker B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: a systematic review of the literature. Eur Spine J 2011; 20: 358-368
  • 15 Maki BE, Sibley KM, Jaglal SB et al. Reducing fall risk by improving balance control: development, evaluation and knowledge-translation of new approaches. J Safety Res 2011; 42: 473-485
  • 16 Emery CA, Cassidy JD, Klassen TP et al. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents. Phys Ther 2005; 85: 502-514
  • 17 Horak FB, Henry SM, Shumway-Cook A. Postural perturbations: new insights for treatment of balance disorders. Phys Ther 1997; 77: 517-533
  • 18 Broadstone BJ, Westcott SL, Deitz JC. Test-retest reliability of two tiltboard tests in children. Phys Ther 1993; 73: 618-625
  • 19 Sarabon N, Mlaker B, Markovic G. A novel tool for the assessment of dynamic balance in healthy individuals. Gait & Posture 2010; 31: 261-264
  • 20 Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol 2003; 13: 371-379
  • 21 Wikstrom EA, Naik S, Lodha N et al. Bilateral balance impairments after lateral ankle trauma: a systematic review and meta-analysis. Gait Posture 2010; 31: 407-414
  • 22 Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther 2000; 80: 896-903
  • 23 Demura S, Yamada T, Shin S. Age and sex differences in various stepping movements of the elderly. Geriatr Gerontol Int 2008; 8: 180-187
  • 24 Ng SS, Hui-Chan CW. The timed up & go test: its reliability and association with lower-limb impairments and locomotor capacities in people with chronic stroke. Arch Phys Med Rehabil 2005; 86: 1641-1647
  • 25 Liston RA, Brouwer BJ. Reliability and validity of measures obtained from stroke patients using the Balance Master. Arch Phys Med Rehabil 1996; 77: 425-430
  • 26 Yelnik A, Bonan I. Clinical tools for assessing balance disorders. Neurophysiol Clin 2008; 38: 439-445
  • 27 Howe TE, Rochester L, Neil F et al. Exercise for improving balance in older people. Cochrane Database Syst Rev 2011; CD004963
  • 28 Duncan PW, Studenski S, Chandler J et al. Functional reach: predictive validity in a sample of elderly male veterans. J Gerontol 1992; 47: M93-M98
  • 29 King MB, Judge JO, Wolfson L. Functional base of support decreases with age. J Gerontol 1994; 49: M258-M263
  • 30 Newstead A, Hinman M, Tomberlin J. Reliability of the Berg Balance Scale and balance master limits of stability tests for individuals with brain injury. Journal of Neurologic Physical Therapy 2005; 29: 18-23
  • 31 Dodd K, Hill K, Haas R et al. Retest reliability of dynamic balance during standing in older people after surgical treatment of hip fracture. Physiother Res Int 2003; 8: 93-100
  • 32 Altman D. Practical statistics for medical research. London: Chapman & Hall; 1991
  • 33 Mergner T. Modeling sensorimotor control of human upright stance. Progress in Brain Research 2007; 165: 283-297
  • 34 Mazaheri M, Coenen P, Parnianpour M et al. Low back pain and postural sway during quiet standing with and without sensory manipulation: A systematic review. Gait Posture 2013; 37: 12-22
  • 35 Amiridis IG, Hatzitaki V, Arabatzi F. Age-induced modifications of static postural control in humans. Neurosci Lett 2003; 350: 137-140
  • 36 Bartlett D, Birmingham T. Validity and reliability of a pediatric reach test. Pediatr Phys Ther 2003; 15: 84-92
  • 37 Duncan PW, Weiner DK, Chandler J et al. Functional reach: a new clinical measure of balance. J Gerontol 1990; 45: M192-M197
  • 38 Katz-Leurer M, Fisher I, Neeb M et al. Reliability and validity of the modified functional reach test at the sub-acute stage post-stroke. Disabil Rehabil 2009; 31: 243-248
  • 39 Lynch SM, Leahy P, Barker SP. Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Phys Ther 1998; 78: 128-133
  • 40 Kage H, Okuda M, Nakamura I et al. Measuring methods for functional reach test: comparison of 1-arm reach and 2-arm reach. Arch Phys Med Rehabil 2009; 90: 2103-2107
  • 41 Behrman AL, Light KE, Flynn SM et al. Is the functional reach test useful for identifying falls risk among individuals with Parkinson’s disease?. Arch Phys Med Rehabil 2002; 83: 538-542
  • 42 Sherrington C, Lord SR. Reliability of simple portable tests of physical performance in older people after hip fracture. Clin Rehabil 2005; 19: 496-504
  • 43 Takahashi T, Ishida K, Yamamoto H et al. Modification of the functional reach test: analysis of lateral and anterior functional reach in community-dwelling older people. Arch Gerontol Geriatr 2006; 42: 167-173
  • 44 Brauer S, Burns Y, Galley P. Lateral reach: a clinical measure of medio-lateral postural stability. Physiother Res Int 1999; 4: 81-88
  • 45 Nitz JC, Choy NLL, Isles RC. Medial-lateral postural stability in community-dwelling women over 40 years of age. Clin Rehabil 2003; 17: 765-767
  • 46 Newton RA. Validity of the multi-directional reach test: a practical measure for limits of stability in older adults. J Gerontol A Biol Sci Med Sci 2001; 56: M248-M252
  • 47 Holbein-Jenny MA, Billek-Sawhney B, Beckman E et al. Balance in personal care home residents: a comparison of the Berg Balance Scale, the Multi-Directional Reach Test, and the Activities-Specific Balance Confidence Scale. J Geriatr Phys Ther 2005; 28: 48-53
  • 48 Eechaute C, Vaes P, Duquet W. Functional performance deficits in patients with CAI: validity of the multiple hop test. Clin J Sport Med 2008; 18: 124-129
  • 49 Kinzey SJ, Armstrong CW. The reliability of the star-excursion test in assessing dynamic balance. J Orthop Sports Phys Ther 1998; 27: 356-360
  • 50 Plisky PJ, Rauh MJ, Kaminski TW et al. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther 2006; 36: 911-919
  • 51 Cho B, Scarpace D, Alexander NB. Tests of stepping as indicators of mobility, balance, and fall risk in balance-impaired older adults. J Am Geriatr Soc 2004; 52: 1168-1173
  • 52 Goldberg A, Schepens S, Wallace M. Concurrent validity and reliability of the maximum step length test in older adults. J Geriatr Phys Ther 2010; 33: 122-127
  • 53 Punakallio A. Trial-to-trial reproducibility and test-retest stability of two dynamic balance tests among male firefighters. International Journal of Sports Medicine 2004; 25: 163-169
  • 54 Clark S, Rose DJ. Evaluation of dynamic balance among community-dwelling older adult fallers: a generalizability study of the limits of stability test. Arch Phys Med Rehabil 2001; 82: 468-474
  • 55 Clark S, Rose DJ, Fujimoto K. Generalizability of the limits of stability test in the evaluation of dynamic balance among older adults. Arch Phys Med Rehabil 1997; 78: 1078-1084
  • 56 Munro AG, Herrington LC. Between-session reliability of the star excursion balance test. Phys Ther Sport 2010; 11: 128-132
  • 57 Gribble PA, Tucker WS, White PA. Time-of-day influences on static and dynamic postural control. J Athl Train 2007; 42: 35-41
  • 58 Hoch MC, Staton GS, McKeon PO. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport 2011; 14: 90-92
  • 59 Robinson R, Gribble P. Kinematic predictors of performance on the Star Excursion Balance Test. J Sport Rehabil 2008; 17: 347-357
  • 60 Herrington L, Hatcher J, Hatcher A et al. A comparison of Star Excursion Balance Test reach distances between ACL deficient patients and asymptomatic controls. Knee 2009; 16: 149-152
  • 61 Olmsted LC, Carcia CR, Hertel J et al. Efficacy of the Star Excursion Balance Tests in Detecting Reach Deficits in Subjects With Chronic Ankle Instability. J Athl Train 2002; 37: 501-506
  • 62 Hertel J, Braham RA, Hale SA et al. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability. J Orthop Sports Phys Ther 2006; 36: 131-137
  • 63 Demura S, Sohee S, Yamaji S. Sex and age differences of relationships among stepping parameters for evaluating dynamic balance in the elderly. J Physiol Anthropol 2008; 27: 207-215
  • 64 Fujisawa H, Takeda R. A new clinical test of dynamic standing balance in the frontal plane: the side-step test. Clin Rehabil 2006; 20: 340-346
  • 65 Melzer I, Shtilman I, Rosenblatt N et al. Reliability of voluntary step execution behavior under single and dual task conditions. J Neuroeng Rehabil 2007; 4: 16
  • 66 Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil 2002; 83: 1566-1571
  • 67 Whitney SL, Marchetti GF, Morris LO et al. The reliability and validity of the Four Square Step Test for people with balance deficits secondary to a vestibular disorder. Arch Phys Med Rehabil 2007; 88: 99-104
  • 68 Godi M, Franchignoni F, Caligari M et al. Comparison of Reliability, Validity, and Responsiveness of the Mini-BESTest and Berg Balance Scale in Patients With Balance Disorders. Phys Ther. 2012
  • 69 Conradsson M, Lundin-Olsson L, Lindelöf N et al. Berg balance scale: intrarater test-retest reliability among older people dependent in activities of daily living and living in residential care facilities. Phys Ther 2007; 87: 1155-1163
  • 70 Cattaneo D, Regola A, Meotti M. Validity of six balance disorders scales in persons with multiple sclerosis. Disabil Rehabil 2006; 28: 789-795
  • 71 Cattaneo D, Jonsdottir J, Repetti S. Reliability of four scales on balance disorders in persons with multiple sclerosis. Disabil Rehabil 2007; 29: 1920-1925
  • 72 Franjoine MR, Gunther JS, Taylor MJ. Pediatric balance scale: a modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr Phys Ther 2003; 15: 114-128
  • 73 Botner EM, Miller WC, Eng JJ. Measurement properties of the Activities-specific Balance Confidence Scale among individuals with stroke. Disabil Rehabil 2005; 27: 156-163
  • 74 Leddy AL, Crowner BE, Earhart GM. Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall. Phys Ther 2011; 91: 102-113
  • 75 Wrisley DM, Marchetti GF, Kuharsky DK et al. Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys Ther 2004; 84: 906-918
  • 76 Lin M-R, Hwang H-F, Hu M-H et al. Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and Tinetti balance measures in community-dwelling older people. J Am Geriatr Soc 2004; 52: 1343-1348
  • 77 Cipriany-Dacko LM, Innerst D, Johannsen J et al. Interrater reliability of the Tinetti Balance Scores in novice and experienced physical therapy clinicians. Arch Phys Med Rehabil 1997; 78: 1160-1164
  • 78 Kegelmeyer DA, Kloos AD, Thomas KM et al. Reliability and validity of the Tinetti Mobility Test for individuals with Parkinson disease. Phys Ther 2007; 87: 1369-1378
  • 79 Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BES­Test) to differentiate balance deficits. Phys Ther 2009; 89: 484-498