Subscribe to RSS
DOI: 10.1055/s-0033-1337960
Cytogenetic Aspects of Childhood Leukemias
Zytogenetische Aspekte bei Leukämien im KindesalterPublication History
Publication Date:
22 May 2013 (online)
Abstract
Recurrent non-random chromosome abnormalities, including numerical or structural changes such as translocations, inversions, insertions or deletions within the leukemia cell nucleus, have been discovered in approximately 80% of patients with a malignant hematological disease. These reciprocal translocations correlate with specific cellular subtypes of hematopoeisis at the stage of their maturation arrest and are therefore important for diagnosis. Some of these aberrations are independent prognostic indicators and help to stratify patients into different risk-adapted therapy groups. Owing to new laboratory methods such as the fluorescence in situ hybridization (FISH) and modified polymerase chain reaction (RT-PCR) the chromosomal breakpoints can be investigated and the rearrangements of genes which produce the abnormal proteins can be identified. Due to the high sensitivity of these available data a new prognostic factor, the “minimal residual disease” (MRD), can be investigated at diagnosis and at intervals during the treatment period. Since we now know which onkoproteins are involved, a target-directed therapy with inhibitors might be possible in the future.
Standard cytogenetic and molecular genetic analysis of the leukemia karyotype is of the utmost importance for classification (WHO), therapy and therapy results in the acute childhood leukemias.
Zusammenfassung
Erworbene chromosomale Aberrationen numerischer oder struktureller Art wie Translokationen, Inversionen, Insertionen oder Deletionen in den Zellkernen der jeweiligen malignen hämatologischen Erkrankung können bei etwa 80% der Patienten nachgewiesen werden. Bei den akuten Leukämien im Kindesalter handelt es sich meist um reziproke Translokationen, die mit bestimmten Zelltypen der Hämatopoese im Zeitpunkt ihrer Ausreifungshemmung korreliert sind. Sie stellen daher bei der Diagnostik der Leukämien eine wichtige Ergänzung dar. Einige dieser Aberrationen sind unabhängige prognostische Faktoren, so dass sie als Indikatoren zur Stratifizierung der Patienten in bestimmte risiko-adaptierte Therapiegruppen eingesetzt werden. Mit Hilfe zusätzlicher Techniken wie Fluoreszenz in situ Hybridisierung (FISH) und Molekulargenetik (RT-PCR, Southern blot) können die chromosomalen Bruchpunkte mit den beteiligten Genverschiebungen (die die abnormen Proteine produzieren) identifiziert werden. Bei der hohen Sensitivität dieser jetzt erhältlichen Daten kann damit auch die „minimale Resterkrankung“ (MRD) bei Diagnose und Verlauf erkannt werden. Auch bieten die nun identifizierten Onkoproteine Möglichkeiten einer zielgerichteten Therapie durch entsprechende Inhibitoren.
Die zyto- und molekulargenetische Untersuchung des Leukämie-Karyotyps ist somit klinisch ganz wichtig für die Klassifizierung (WHO), die Therapie und den Behandlungserfolg bei den Leukämien im Kindesalter.
-
References
- 1 Attarbaschi A, Mann G, Panzer-Grumayer R et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol 2008; 26: 3046-3050
- 2 Borkhardt A, Repp R, Haas OA et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 1997; 14: 195-202
- 3 Borkhardt A, Bojesen S, Haas OA et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci USA 2000; 97: 9168-9173
- 4 Boveri Th. Zur Frage der Entstehung maligner Tumoren. Fischer; Jena: 1914
- 5 Corral J, Forster A, Thompson S et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA 1993; 90: 8538-8542
- 6 Creutzig U, van den Heuvel-Eibrink MM, Gibson B et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 2012; 120: 3187-3205
- 7 Gale KB, Ford AM, Repp R et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950-13954
- 8 Greaves MF. Infection, immune responses and the aetiology of childhood leukaemia. Nature Reviews Cancer 2006; 6: 193-203
- 9 Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 2009; 144: 147-156
- 10 Lampert F, Harbott J, Ludwig WD et al. Acute Leukemia with Chromosome Translocation (4;11): 7 New Patients and Analysis of 71 Cases. Blut 1987; 54: 325-335
- 11 Lampert F, Harbott J, Ritterbach J et al. Karyotypes in Acute Childhood Leukemias May lose Prognostic Significance with More Intensive and Specific Chemotherapy. Cancer Genet Cytogenet 1991; 54: 277-279
- 12 Lion T, Haas OA, Harbott J et al The Translocation t(1;22)(p13;q13) is a Nonrandom Marker Specifically Associated With Acute Megakaryocytic Leukemia in Young Children. Blood 1992; 79: 3325-3330
- 13 Möricke A, Zimmermann M, Reiter A et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010; 24: 265-284
- 14 Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497
- 15 Pichler H, Moricke A, Mann G et al. Prognostic relevance of dic(9;20)(p11;q13) in childhood B-cell precursor acute lymphoblastic leukaemia treated with Berlin-Frankfurt-Munster (BFM) protocols containing an intensive induction and post-induction consolidation therapy. Br J Haematol 2010; 93-100
- 16 Pui Ch, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030-1043
- 17 Repp R, Borkhardt A, Haupt E et al. Detection of four different 11q23 chromosome abnormalities by multiplex PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia 1995; 9: 210-215
- 18 Ritterbach J, Hiddemann W, Beck JD et al. Detection of hyperdiploid karyotypes (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) using fluorescence in situ hybridization (FISH). Leukemia 1998; 12: 427-433
- 19 Robinson HM, Broadfield ZJ, Cheung KL et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 2003; 17: 2249-2250
- 20 Romana SP, Le Coniat M, Berger R. t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer 1994; 9: 186-191
- 21 Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290-293
- 22 Russell LJ, Capasso L, Vater I et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 2009; 114: 2688-2698
- 23 Secker-Walker LM, Lawler SD, Haristy R. Prognostic implications of chromsomal findings in acute lymphoblastic leukaemia at diagnosis. Br med J 1978; 2: 1529-1530
- 24 Schlieben S, Borkhardt A, Reinisch I et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM 90 and CoALL-05-92. Leukemia 1996; 10: 957-963
- 25 Schoumans J, Johansson B, Corcoran M et al. Characterisation of dic(9;20)(p11-13;q11) in childhood B-cell precursor acute lymphoblastic leukaemia by tiling resolution array-based comparative genomic hybridisation reveals clustered breakpoints at 9p13.2 and 20q11.2. Br J Haematol 2006; 135: 492-499
- 26 Soulier J, Trakhtenbrod L, Naijfeldet V et al. Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cytogenetic subgroup. Leukemia 2000; 317: 1679-1682
- 27 Tosi S, Harbott J, Teigler-Schlegel A et al. t(7;12)(q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 2000; 29: 325-332
- 28 Von Bergh AR, Gargallo P, De Prijk B et al. High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer 2006; 45: 731-739
- 29 von Neuhoff C, Reinhardt D, Sander A et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 2010; 28: 2682-2689