Rofo 2013; 185(9): 816-823
DOI: 10.1055/s-0033-1335939
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Characterization of Focal Breast Lesions by Means of Elastography

Charakterisierung von Herdläsionen der Brustdrüse mittels Elastografie
T. Fischer
1   Institute of Radiology and Ultrasound Research Laboratory, Charité – University Berlin
,
I. Sack
2   Institute of Radiology, Charité – University Berlin
,
A. Thomas
3   Department of Gynecology and Obstetrics and Ultrasound Research Laboratory, Charité – University Berlin
› Author Affiliations
Further Information

Publication History

02 September 2012

18 May 2013

Publication Date:
25 July 2013 (online)

Abstract

Purpose: The modern method of sonoelastography of the breast is used for differentiating focal lesions. This review gives an overview of the different techniques available and discusses their roles in the routine clinical setting.

Materials and Methods: The presented techniques include compression or vibration elastography as well as shear wave elastography. Descriptions of the methods are supplemented by a discussion of the clinical role of each technique based on the most recent literature. We discuss by outlining two recent experimental approaches – MRI and tomosynthesis elastography.

Results: Currently available data suggest that elastography is an important supplementary tool for the differentiation of breast tumors under routine clinical conditions. The specificity improves with the immediate availability of additional diagnostic information using real-time techniques and/or the calculation of strain ratios (SR). Elastography is especially helpful in women with involuted breasts for differentiating BI-RADS-US 3 and 4 lesions and for evaluating very small cancers without the typical imaging features of malignancy. Here, elastography techniques are highly specific, while the sensitivity decreases compared to B-mode ultrasound. SR calculation is especially helpful in women who have a high risk of breast cancer and high pretest likelihood.

Conclusion: B-mode ultrasound is still the first-line method for the initial evaluation of the breast. If suspicious findings are detected, elastography with or without SR calculation is the most crucial supplementary tool.

Key Points:

  • Improved specificity for elastography and SR calculation.

  • Significant benefits for high-risk collective (BRCA mutation).

Citation Format:

  • Fischer T, Sack I, Thomas A Characterization of Focal Breast Lesions by Means of Elastography. Fortschr Röntgenstr 2013; 185: 812 – 823

Zusammenfassung

Ziel: Die moderne Methode der sonografischen Elastografie der Brustdrüse dient der Differenzierung von Herdbefunden. Diese Übersichtsarbeit beschreibt die verschiedenen Methoden und Ansätze sowie deren Nutzen im klinischen Alltag.

Material und Methoden: Sowohl die Kompressions- oder Vibrationselastografie als auch die Scherwellenelastografie werden methodisch beschrieben und ihre Wertigkeit im klinischen Alltag anhand der aktuellen Literatur belegt. Ebenfalls werden MR- und Tomosynthese-Elastografie als experimenteller Ansatz diskutiert.

Ergebnisse: Bei der derzeitigen Datenlage kann die Elastografie als wichtiges Zusatzkriterium zur Differenzierung von Mammatumoren in der Routine Einzug halten. Es zeigt sich eine Verbesserung der Spezifität bei sofortigem Informationsgewinn durch den Einsatz der Real-Time-Methode und/oder der Strain-Ratio-Kalkulation (SR). Anwendungsgebiete sind in der Trennung der Kategorie BI-RADS-US 3 und 4, insbesondere bei Brustdrüseninvolution sowie bei sehr kleinen Karzinomen ohne typische Malignitätskriterien zu sehen, wo hoch spezifische Ergebnisse erzielt werden, wenngleich die Sensitivität im Vergleich zum B-Bild abfällt. Insbesondere im Subkollektiv mit hohem Brustkrebsrisiko sollte die hohe Vor-Testwahrscheinlichkeit der SR-Kalkulation Eingang in das diagnostische Prozedere finden.

Schlussfolgerung: Suchmethode der Wahl bleibt die B-Bildsonografie, erst bei auffälligem Befund stellt die Elastografie mit und ohne SR das entscheidende Zusatzkriterium dar.

Deutscher Artikel/German Article

 
  • References

  • 1 Céspedes I, Ophir J, Ponnekanti H et al. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 1993; 15: 73-88
  • 2 Garra BS, Cespedes EI, Ophir J et al. Elastography of breast lesions: initial clinical results. Radiology 1997; 202: 79-86
  • 3 Krouskop TA, Wheeler TM, Kallel F et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 1998; 20: 260-274
  • 4 Konofagou E, Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues. Ultrasound Med Biol 1998; 24: 1183-1199
  • 5 Frey H. Realtime-Elastographie. Ein neues sonografisches Verfahren für die Darstellung der Gewebeelastizität. Radiologe 2003; 10: 850
  • 6 Klintworth N, Mantsopoulos K, Zenk J et al. Sonoelastography of parotis gland tumours: initial experience and identification of characteristics patterns. Eur Radiol 2012; 22: 947-956
  • 7 Rubaltelli L, Corradin S, Dorigo A et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall in Med 2009; 30: 175-179
  • 8 Hong Y, Liu X, Li Z et al. Real-time ultrasound elastography in the differential diagnosis in benign and malignant thyroid nodules. J Ultrasound Med 2009; 28: 861-867
  • 9 Kanamoto M, Shimada M, Ikegami T et al. Real time elastography for non invasive diagnosis in liver fibrosis. J Hepatobiliary Pancreat Surg 2009; 16: 463-467
  • 10 Friedrich-Rust M, Nierhoff J, Lupsor M et al. Performance of acoustic radiation force impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J of Viral Hepatitis 2012; 19: e212-e219
  • 11 Aigner F, Pallwein L, Junker D et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 2010; 184: 913-917
  • 12 Thomas A, Kümmel S, Gemeinhardt O et al. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 2007; 14: 193-200
  • 13 Thomas A, Kümmel S, Fritzsche F et al. Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions?. Acad Radiol 2006; 13: 1496-1504
  • 14 Wojcinski S, Farrokh A, Weber S et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall in Med 2010; 31: 484-491
  • 15 Thomas A, Degenhardt F, Farrokh A et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 2010; 17: 558-563
  • 16 Itoh A, Ueno E, Tohno E et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341-350
  • 17 Thomas A, Fischer T, Ohlinger R et al. Real-time elastography – an advanced method of ultrasound: First results in 108 patients with breast lesions. Ultrasound Obstet Gynecol 2006; 28: 335-340
  • 18 American College of Radiology (ACR). Breast Imaging and Reporting Data Systems (BI-RADS®). Breast Imaging Atlas. Reston, VA: American College of Radiology; 2003
  • 19 Schmachtenberg C, Engelken F, Fischer T et al. Intraoperative Specimen Radiography in Patients with Nonpalpable Malignant Breast Lesions. Fortschr Röntgenstr 2012; 184: 635-642
  • 20 Waldmann A, Adrich S, Eisemann N et al. Struktur- und Prozessqualität in der qualitätsgesicherten Mammadiagnostik in Schleswig-Holstein. Fortschr Röntgenstr 2012; 184: 113-121
  • 21 Ophir J, Céspedes I, Ponneanti H et al. Elastography: a quantitative method for imaging the elasticity of biological tissue. Ultrason Imaging 1991; 13: 111-114
  • 22 Catheline S, Wu F, Fink M. A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J Acoust Soc Am 1999; 105: 2941-2950
  • 23 Parker KJ, Lerner RM. Sonoelasticity of organs: shear waves ring a bell. J Acoust Soc Am 1999; 105: 2941-2950
  • 24 Sandrin L, Tanter M, Catheline S et al. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 426-435
  • 25 Hiltawsky KM, Krüger M, Starke C et al. Freehand ultrasound elastography of breast lesions: clinical results. Ultrasound Med Biol 2001; 27: 1461-1469
  • 26 Bercoff J, Chaffai S, Tanter M et al. In vivo breast tumor detection using transient elastography. Ultrasound Med Biol 2003; 10: 1387-1396
  • 27 Lorenzen J, Sinkus R, Adam G. Elastographie: Quantitative Bildgebung der elastischen Gewebeeigenschaften. Fortschr Röntgenstr 2003; 175: 623-630
  • 28 Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27 825 patient evaluations. Radiology 2002; 225: 165-175
  • 29 Schaefer FK, Heer I, Schaefer PJ et al. Breast ultrasound elastography – results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 2011; 77: 450-456
  • 30 Lee JH, Kim SH, Kang BJ et al. Role and clinical usefulness of elastography in small breast masses. Acad Radiol 2011; 18: 74-80
  • 31 Tan SM, Teh HS, Mancer JF et al. Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography – A clinical approach. Breast 2008; 17: 252-257
  • 32 Zhi H, Ou B, Luo B et al. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 2007; 26: 807-815
  • 33 Fischer T, Peisker U, Fiedor S et al. Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall in Med 2012; 33: 372-379
  • 34 Zhi H, Xiao XY, Yang HY et al. Ultrasonic elastography in breast cancer diagnosis: stain ratio vs. 5-point scale. Acad Radiol 2010; 17: 1227-1233
  • 35 Moon WK, Chang RF, Chen CJ et al. Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression. Radiology 2005; 236: 458-464
  • 36 Quinn EM, Coveney AP, Redmond HP. Use of magnetic resonance imaging in detection of breast cancer recurrence: a systematic review. Ann Surg Oncol 2012; 19: 3035-3041
  • 37 Thomas A, Warm M, Diekmann F et al. Tissue doppler and strain imaging for evaluating tissue elasticity of breast lesions. Acad Radiol 2007; 14: 522-529
  • 38 Beier S. Standardisierte Dehnungsfeldanalyse am Brustphantom und Einführung des Gewebedopplerverfahrens zur Differenzierung mammasonografischer Herdbefunde [Internet]. Verfügbar unter: http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000020335
  • 39 Friedrich-Rust M, Ong M-F, Martens S et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 2008; 134: 960-974
  • 40 Friedrich-Rust M, Schwarz A, Ong M et al. Real-time tissue elastography versus FibroScan for noninvasive assessment of liver fibrosis in chronic liver disease. Ultraschall in Med 2009; 30: 478-484
  • 41 Stock KF, Klein BS, Vo CongMT et al. ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc 2010; 46: 139-148
  • 42 Evans A, Whelehan P, Thomson K et al. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer 2012; 107: 224-229
  • 43 Berg WA, Cosgrove DO, Doré CJ et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 2012; 262: 435-449
  • 44 Sadigh G, Carlos RC, Neal CH et al. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 2012; 133: 23-35
  • 45 Sadigh G, Carlos RC, Neal CH et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 2012; 134: 923-931
  • 46 Muthupillai R, Lomas DJ, Rossman P et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857
  • 47 Sinkus R, Siegmann K, Xydeas T et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58: 1135-1144
  • 48 Plewes DB, Bishop J, Samani A et al. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys Med Biol 2000; 45: 1591-1610
  • 49 Van Houten EE, Doyley MM, Kennedy FE et al. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J Magn Reson Imaging 2003; 17: 72-85
  • 50 Klatt D, Hamhaber U, Asbach P et al. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 2007; 52: 7281-7294
  • 51 Papazoglou S, Hirsch S, Braun J et al. Multifrequency inversion in magnetic resonance elastography. Phys Med Biol 2012; 57: 2329-2346
  • 52 Hausmann D, Kern C, Schroder MT et al. Ganzkörper-MRT in der präoperativen Diagnostik des Mammakarzinoms – ein Vergleich mit den Stagingmethoden in der S 3-Leitlinie. Fortschr Röntgenstr 2011; 183: 1130-1137
  • 53 Muller-Schimpfle MP, Heindel W, Kettritz U et al. Konsensustreffen der Kursleiter in der Mammadiagnostik am 7.5.20111 in Frankfurt am Main – Magnet-Resonanz-Tomografie der Mamma. Fortschr Röntgenstr 2012; 184: 919-924
  • 54 Engelken FJ, Sack I, Klatt D et al. Evaluation of tomosynthesis elastography in a breast-mimicking phantom. Eur J Radiol 2012; 81: 2169-2173