Rofo 2013; 185(9): 857-861
DOI: 10.1055/s-0033-1335911
Muskuloskelettales System
© Georg Thieme Verlag KG Stuttgart · New York

Diffusion Tensor Imaging of Skeletal Muscle – Correlation of Fractional Anisotropy to Muscle Power

Diffusions-Tensor Imaging des Skelettmuskels: Korrelation von fraktioneller Anisotropie mit mechanischen Muskelleistung
M. Scheel
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
T. Prokscha
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
,
P. von Roth
2   Orthopaedic Department, Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Germany
,
T. Winkler
2   Orthopaedic Department, Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Germany
,
R. Dietrich
3   Department of Training and Movement Sciences, Center for Sport Science and Sports Medicine Berlin, Humboldt-University Berlin, Germany
,
S. Bierbaum
3   Department of Training and Movement Sciences, Center for Sport Science and Sports Medicine Berlin, Humboldt-University Berlin, Germany
,
A. Arampatzis
3   Department of Training and Movement Sciences, Center for Sport Science and Sports Medicine Berlin, Humboldt-University Berlin, Germany
,
G. Diederichs
1   Department of Radiology, Charité – Universitätsmedizin Berlin, Germany
› Author Affiliations
Further Information

Publication History

14 January 2013

21 May 2013

Publication Date:
25 July 2013 (online)

Abstract

Purpose: Recent DTI studies demonstrated the possibility of fiber geometry visualization in skeletal muscle. We tested for an association between muscle power and standard DTI parameters, e. g. fractional anisotropy.

Materials and Methods: Maximal muscle power (Lmax) of the soleus muscle was determined in 11 healthy subjects. Subsequently DTI was performed and standard parameters (fractional anisotropy – FA, mean diffusivity – MD, parallel diffusivity – PD, radial diffusivity – RD) were extracted in an ROI of the soleus muscle.

Results: We found a signficant association of Lmax with FA (neg. correlation: r = -0.85, p = 0.0015) and RD (pos. correlation r = 0.80, p = 0.047). There was no signficant association of MD or PD.

Conclusion: Maximum muscle power is an indirect measure of fiber type distribution. The correlation between muscle power and DTI parameters can be explained by differences in fiber diameter and differences in the intracellular microstructure of type-1 and type-2 fibers. DTI should be evaluated as a tool for non-invasive quantification of fiber type distribution in skeletal muscle.

Key Points:

  • Fractional anisotropy is negatively correlated with maximum power of a muscle.

  • An explanation is the association of fractional anisotropy with muscle fiber distribution.

  • DTI might facilitate non-invasive assessment of fiber type distribution in skeletal muscle.

Citation Format:

  • Scheel M, Prokscha T, von Roth P et al. Diffusion Tensor Imaging of Skeletal Muscle – Correlation of Fractional Anisotropy to Muscle Power. Fortschr Röntgenstr 2013; 857 – 861

Zusammenfassung

Ziel: Studien der letzten Jahre haben gezeigt, dass mit Diffusions-Tensor Imaging die Fasergeometrie von Skelettmuskeln dargestellt werden kann. Ziel der aktuellen Studie war es zu überprüfen, ob auch zwischen funktioneller Muskelleistung und Standard DTI-Parametern, wie z. B. der Fraktionellen Anisotropie (FA) Korrelationen bestehen.

Material und Methoden: Bei 11 gesunden Probanden wurde zunächst die maximale mechanische Leistung (Lmax) des M. soleus bestimmt. Im Anschluss wurde bei allen Probanden DTI Messungen durchgeführt und die Standard DTI Parameter (Fraktionelle Anisotropie – FA, Mittlere Diffusivität – MD, Parallel Diffusivität – PD, Radiale Diffusivität – RD) über eine ROI Analyse im M. soleus quantifiziert.

Ergebnisse: Es bestand eine signifikante Assoziation zwischen Lmax und FA (negative Korrelation r = -0.85, p = 0.0015) bzw. RD (positive Korrelation r = 0.80, p = 0.047). Kein signifikanter Zusammenhang bestand zu MD oder PD.

Schlussfolgerungen: Die maximale mechanische Muskelleistung ist ein indirekter Parameter für die Muskelfaserzusammensetzung. Die gefundenen Korrelation zwischen Muskelleistung und DTI Parametern können durch Unterschiede im Faserdurchmesser und Unterschiede in der intrazellulären Mikrostruktur von Typ-1 und Typ-2 Fasern erklärt werden. DTI eignet sich möglicherweise als nicht-invasive Methode zur Bestimmung der Muskelfaserzusammensetzung.

Deutscher Artikel/German Article

 
  • Literatur

  • 1 Matthews PM, Filippini N, Douaud G. Brain Structural and Functional Connectivity and the Progression of Neuropathology in Alzheimer’s Disease. J Alzheimers Dis 2013; 33: S163-S172
  • 2 Turner MR, Agosta F, Bede P et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6: 319-337
  • 3 Sunaert S, Sage C, Peeters R et al. Vascular versus neuronal defects in ALS: an fMRI and DTI study. Fortschr Röntgenstr 2006; 178 DOI: 10.1055/s-2006-931855.
  • 4 Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267
  • 5 Sinha U, Sinha S, Hodgson JA et al. Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J Appl Physiol 2011; 110: 807-819
  • 6 Zijta FM, Froeling M, Van der Paardt MP et al. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor. Eur Radiol 2011; 21: 1243-1249
  • 7 Froeling M, Nederveen AJ, Heijtel DFR et al. Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm. J Magn Reson Imaging 2012; 36: 237-248
  • 8 Heemskerk AM, Strijkers GJ, Drost MR et al. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology 2007; 243: 413-421
  • 9 Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 2006; 24: 402-408
  • 10 Yamabe E, Nakamura T, Oshio K et al. Line scan diffusion spectrum of the denervated rat skeletal muscle. J Magn Reson Imaging 2007; 26: 1585-1589
  • 11 Noseworthy MD, Davis AD, Elzibak AH. Advanced MR imaging techniques for skeletal muscle evaluation. Semin Musculoskelet Radiol 2010; 14: 257-268
  • 12 Strijkers GJ, Drost MR, Nicolay K. Diffusion Imaging in Muscle. Diffusion MRI: Theory, Methods, and Applications. 1st ed. Oxford University Press; 2010: 672-689
  • 13 Wörtler K, Heuck A. Arbeitsgemeinschaft Muskuloskelettale Radiologie. Fortschr Röntgenstr 2011; 183: 1016-1018
  • 14 Langner S, Schroeder HW, Hosten N et al. Diagnostik neurovaskulärer Kompressionssyndrome. Fortschr Röntgenstr 2012; 184: 220-228
  • 15 Bottinelli R, Betto R, Schiaffino S et al. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol 1994; 478: 341-349
  • 16 Bottinelli R, Schiaffino S, Reggiani C. Force-velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol 1991; 437: 655-672
  • 17 Arampatzis A, De Monte G, Morey-Klapsing G. Effect of contraction form and contraction velocity on the differences between resultant and measured ankle joint moments. J Biomech 2007; 40: 1622-1628
  • 18 Arampatzis A, Morey-Klapsing G, Karamanidis K et al. Differences between measured and resultant joint moments during isometric contractions at the ankle joint. J Biomech 2005; 38: 885-892
  • 19 Saupe N, White LM, Stainsby J et al. Diffusion tensor imaging and fiber tractography of skeletal muscle: optimization of B value for imaging at 1. 5 T. Am J Roentgenol 2009; 192: W282-W290
  • 20 Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36: 893-906
  • 21 Ogata T, Yamasaki Y. Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 1997; 248: 214-223
  • 22 Kinsey ST, Locke BR, Penke B et al. Diffusional anisotropy is induced by subcellular barriers in skeletal muscle. NMR Biomed 1999; 12: 1-7
  • 23 Galbán CJ, Maderwald S, Uffmann K et al. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur. J Appl Physiol 2004; 93: 253-262
  • 24 Sinha S, Sinha U, Edgerton VR. In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 2006; 24: 182-190
  • 25 Budzik JF, Le ThucV, Demondion X et al. In vivo MR tractography of thigh muscles using diffusion imaging: initial results. Eur Radiol 2007; 17: 3079-3085
  • 26 Karampinos DC, King KF, Sutton BP et al. In vivo study of cross-sectional skeletal muscle fiber asymmetry with diffusion-weighted MRI. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 327-330
  • 27 Galbán CJ, Maderwald S, Uffmann K et al. A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed 2005; 18: 489-498
  • 28 Galbán CJ, Maderwald S, Stock F et al. Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging. J Gerontol A Biol Sci Med Sci 2007; 62: 453-458
  • 29 Schwenzer NF, Steidle G, Martirosian P et al. Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed 2009; 22: 1047-1053
  • 30 Okamoto Y, Kunimatsu A, Kono T et al. Changes in MR diffusion properties during active muscle contraction in the calf. Magn Reson Med Sci 2010; 9: 1-8
  • 31 Sinha S, Sinha U. Reproducibility analysis of diffusion tensor indices and fiber architecture of human calf muscles in vivo at 1.5 Tesla in neutral and plantarflexed ankle positions at rest. J Magn Reson Imaging 2011; 34: 107-119
  • 32 Schwenzer NF, Pfannenberg C, Reischl G et al. Einsatz von MR/PET in der onkologischen Bildgebung. Fortschr Röntgenstr 2012; 184: 780-787
  • 33 Petritsch B, Köstler H, Machann W et al. Nicht-Invasive Bestimmung des myocardial Lipidgehalts bei M. Fabry mittels 1H-MR Spectroscopy. Fortschr Röntgenstr 2012; 184: 1020-1025