Rofo 2013; 185(12): 1149-1166
DOI: 10.1055/s-0033-1335438
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Superparamagnetic Iron Oxide Nanoparticles in Biomedicine: Applications and Developments in Diagnostics and Therapy

Superparamagnetische Eisenoxid-Nanopartikel in der Biomedizin: Anwendungen und Entwicklungen in Diagnostik und Therapie
H. Ittrich
,
K. Peldschus
,
N. Raabe
,
M. Kaul
,
G. Adam
Further Information

Publication History

25 October 2012

18 March 2013

Publication Date:
05 September 2013 (online)

Abstract

Superparamagnetic iron oxide nanoparticles (SPIO) can be used to image physiological processes and anatomical, cellular and molecular changes in diseases. The clinical applications range from the imaging of tumors and metastases in the liver, spleen and bone marrow, the imaging of lymph nodes and the CNS, MRA and perfusion imaging to atherosclerotic plaque and thrombosis imaging. New experimental approaches in molecular imaging describe undirected SPIO trapping (passive targeting) in inflammation, tumors and associated macrophages as well as the directed accumulation of SPIO ligands (active targeting) in tumor endothelia and tumor cells, areas of apoptosis, infarction, inflammation and degeneration in cardiovascular and neurological diseases, in atherosclerotic plaques or thrombi. The labeling of stem or immune cells allows the visualization of cell therapies or transplant rejections. The coupling of SPIO to ligands, radio- and/or chemotherapeutics, embedding in carrier systems or activatable smart sensor probes and their externally controlled focusing (physical targeting) enable molecular tumor therapies or the imaging of metabolic and enzymatic processes. Monodisperse SPIO with defined physicochemical and pharmacodynamic properties may improve SPIO-based MRI in the future and as targeted probes in diagnostic magnetic resonance (DMR) using chip-based µNMR may significantly expand the spectrum of in vitro analysis methods for biomarker, pathogens and tumor cells. Magnetic particle imaging (MPI) as a new imaging modality offers new applications for SPIO in cardiovascular, oncological, cellular and molecular diagnostics and therapy.

Key Points:

  • SPIO can be used for diagnosis, MR imaging, and treatment.

  • Monodisperse SPIO improve physicochemistry and pharmacodynamics.

  • SPIO in targeted probes can be used in in-vitro diagnostic imaging (µNMR).

  • The potential to use SPIO in magnetic particle imaging (MPI) must be evaluated.

Citation Format:

  • Ittrich H, Peldschus K, Raabe N et al. Superparamagnetic Iron Oxide Nanoparticles in Biomedicine: Applications and Developments in Diagnostics and Therapy. Fortschr Röntgenstr 2013; 185: 1149 – 1166

Zusammenfassung

Mithilfe von Superparamagnetischen Eisenoxid-Nanopartikeln (SPIO) können physiologische Abläufe sowie anatomische, zelluläre und molekulare Veränderungen in Krankheitsprozessen abgebildet werden. Die klinischen Anwendungen reichen von der Tumor- und Metastasenbildgebung in Leber, Milz und Knochenmark, über die Lymphknoten- und ZNS-Bildgebung, die MR-Angiografie und Perfusionsdiagnostik bis hin zur atherosklerotischen Plaque- und Thrombosebildgebung. Die experimentellen Anwendungsfelder in der Molekularen Bildgebung umfassen neben ungerichteter SPIO-Anreicherung (Passive Targeting) in Entzündungsregionen und Tumoren sowie assoziierten Makrophagen die zielgerichtete Akkumulation von SPIO-Liganden (Active Targeting) an/in Tumorendothelien und Tumorzellen, Apoptose-, Infarkt-, Inflammations- und Degenerationsarealen in kardiovaskulären und neurologischen Erkrankungen, in atherosklerotischen Plaques oder Thromben. Die SPIO-Markierung von Stamm- oder Immunzellen erlaubt die Visualisierung von Zelltherapien oder Transplantat-Abstoßungen. Die Kopplung von SPIO an Liganden, Radio- und/oder Chemotherapeutika, die Einbettung in Trägersysteme oder aktivierbare Sonden sowie deren extern gesteuerter Fokussierung (Physical Targeting) ermöglicht molekulare Tumortherapien sowie die Abbildung metabolischer und enzymatischer Prozesse. Monodisperse SPIO mit definierten physikochemischen und pharmakodynamischen Eigenschaften könnten die SPIO-unterstützte MRT verbessern und zukünftig als zielgerichtete Sonden in der Diagnostischen Magnetresonanz (DMR) unter Nutzung von chipbasierten µNMR das Spektrum der In-vitro-Analysemethoden für Biomarker, Pathogene und Tumorzellen entscheidend erweitern. Magnetic Particle Imaging (MPI) als neues Abbildungsverfahren könnte SPIO sowohl in der kardiovaskulären, onkologischen, zellulären und molekularen Diagnostik und Therapie neue Anwendungsfelder eröffnen.

Deutscher Artikel/German Article

 
  • References

  • 1 Bean CP. Magnetic Granulometry and Superparamagnetism. J Appl Phys 1956; 27: 1448-1452
  • 2 Bean CP, Livingston JD. Superparamagnetism. J Appl Phys 1959; 30: 120-129
  • 3 Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Géophys 1949; 5: 99-136
  • 4 Schoonmann J. Nanostructured materials in solid state ionics. Solid State Ionics 2000; 135: 5-19
  • 5 Kemshead JT, Ugelstad J. Magnetic separation techniques: their application to medicine. Mol Cell Biochem 1985; 67: 11-18
  • 6 Josephson L, Lewis J, Jacobs P et al. The effects of iron oxides on proton relaxivity. Magn Reson Imaging 1988; 6: 647-653
  • 7 Hemmingsson A, Carlsten J, Ericsson A et al. Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta Radiol 1987; 28: 703-705
  • 8 Weissleder R, Elizondo G, Wittenberg J et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 1990; 175: 494-498
  • 9 Seneterre E, Weissleder R, Jaramillo D et al. Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 1991; 179: 529-533
  • 10 Stillman AE, Wilke N, Li D et al. Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 1996; 20: 51-55
  • 11 Schmitz SA, Coupland SE, Gust R et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 2000; 35: 460-471
  • 12 Schmitz SA, Winterhalter S, Schiffler S et al. USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology 2001; 221: 237-243
  • 13 Hahn PF, Stark DD, Weissleder R et al. Clinical application of superparamagnetic iron oxide to MR imaging of tissue perfusion in vascular liver tumors. Radiology 1990; 174: 361-366
  • 14 Canet E, Revel D, Forrat R et al. Superparamagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond T1-weighted MRI. Magn Reson Imaging 1993; 11: 1139-1145
  • 15 Trillaud H, Grenier N, Degreze P et al. First-pass evaluation of renal perfusion with TurboFLASH MR imaging and superparamagnetic iron oxide particles. J Magn Reson Imaging 1993; 3: 83-91
  • 16 Kent TA, Quast MJ, Kaplan BJ et al. Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent. Magn Reson Med 1990; 13: 434-443
  • 17 Bradley RH, Kent TA, Eisenberg HM et al. Middle cerebral artery occlusion in rats studied by magnetic resonance imaging. Stroke 1989; 20: 1032-1036
  • 18 Deloison B, Siauve N, Aimot S et al. SPIO-enhanced magnetic resonance imaging study of placental perfusion in a rat model of intrauterine growth restriction. BJOG 2012; 119: 626-633
  • 19 Reiner CS, Lutz AM, Tschirch F et al. USPIO-enhanced magnetic resonance imaging of the knee in asymptomatic volunteers. Eur Radiol 2009; 19: 1715-1722
  • 20 Lewin M, Carlesso N, Tung CH et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000; 18: 410-414
  • 21 Bulte JW, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001; 19: 1141-1147
  • 22 Islam T, Josephson L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 2009; 5: 99-107
  • 23 Yu Y, Sun D. Superparamagnetic iron oxide nanoparticle “theranostics” for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 2010; 3: 117-130
  • 24 Jordan A, Scholz R, Maier-Hauff K et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006; 78: 7-14
  • 25 Bruns OT, Ittrich H, Peldschus K et al. Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat Nanotechnol 2009; 4: 193-201
  • 26 Bartelt A, Bruns OT, Reimer R et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med 2011; 17: 200-205
  • 27 Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214-1217
  • 28 Taupitz M, Schmitz S, Hamm B. Superparamagnetic iron oxide particles: current state and future development. Fortschr Röntgenstr 2003; 175: 752-765
  • 29 Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004; 17: 484-499
  • 30 Dodd SJ, Williams M, Suhan JP et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 1999; 76: 103-109
  • 31 Haacke EM, Xu Y, Cheng YC et al. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612-618
  • 32 Haacke EM, Mittal S, Wu Z et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 2009; 30: 19-30
  • 33 Mittal S, Wu Z, Neelavalli J et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 2009; 30: 232-252
  • 34 Eibofner F, Steidle G, Kehlbach R et al. Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging. Magn Reson Med 2010; 64: 1027-1038
  • 35 Zhao Q, Langley J, Lee S et al. Positive contrast technique for the detection and quantification of superparamagnetic iron oxide nanoparticles in MRI. NMR Biomed 2011; 24: 464-472
  • 36 Dahnke H, Liu W, Herzka D et al. Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 2008; 60: 595-603
  • 37 Massart R, Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline medium – yield and particle-size control. Journal of Chemical Physics 1987; 84: 967-973
  • 38 Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 2002; 124: 8204-8205
  • 39 Park J, An K, Hwang Y et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004; 3: 891-895
  • 40 Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11: 2319-2331
  • 41 Shen T, Weissleder R, Papisov M et al. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 1993; 29: 599-604
  • 42 Taupitz M, Schnorr J, Abramjuk C et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 2000; 12: 905-911
  • 43 Wagner S, Schnorr J, Pilgrimm H et al. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 2002; 37: 167-177
  • 44 Schnorr J, Wagner S, Pilgrimm H et al. Preclinical characterization of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as a blood pool contrast medium for MR angiography. Acad Radiol 2002; 9: S307-S309
  • 45 Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol 2002; 9: S304-S306
  • 46 Senpan A, Caruthers SD, Rhee I et al. Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 2009; 3: 3917-3926
  • 47 Gupta AK, Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 2004; 3: 66-73
  • 48 Chouly C, Pouliquen D, Lucet I et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996; 13: 245-255
  • 49 Laurent S, Bridot JL, Elst LV et al. Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2010; 2: 427-449
  • 50 Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995-4021
  • 51 Lunov O, Syrovets T, Rocker C et al. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 2010; 31: 9015-9022
  • 52 Weissleder R, Bogdanov A, Neuwelt EA et al. Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews 1995; 16: 321-334
  • 53 Corot C, Robert P, Idee JM et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006; 58: 1471-1504
  • 54 Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 2004; 15: 493-496
  • 55 Schafer R, Kehlbach R, Wiskirchen J et al. Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 2007; 244: 514-523
  • 56 Freund B, Tromsdorf UI, Bruns OT et al. A simple and widely applicable method to (59)fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano 2012; 6: 7318-7325
  • 57 Gibson N, Holzwarth U, Abbas K et al. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol 2011; 85: 751-773
  • 58 Natarajan A, Gruettner C, Ivkov R et al. NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Bioconjug Chem 2008; 19: 1211-1218
  • 59 Glaus C, Rossin R, Welch MJ et al. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 2010; 21: 715-722
  • 60 de Torres MR R, Tavare R, Glaria A et al. 99mTC-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 2011; 22: 455-465
  • 61 Anzai Y, Piccoli CW, Outwater EK et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 2003; 228: 777-788
  • 62 Weissleder R, Stark DD, Engelstad BL et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 1989; 152: 167-173
  • 63 Bourrinet P, Bengele HH, Bonnemain B et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006; 41: 313-324
  • 64 Kawamori Y, Matsui O, Kadoya M et al. Differentiation of hepatocellular carcinomas from hyperplastic nodules induced in rat liver with ferrite-enhanced MR imaging. Radiology 1992; 183: 65-72
  • 65 Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. Am J Roentgenol 1990; 155: 943-950
  • 66 Imai Y, Murakami T, Yoshida S et al. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 2000; 32: 205-212
  • 67 Takeshita K, Nagashima I, Frui S et al. Effect of superparamagnetic iron oxide-enhanced MRI of the liver with hepatocellular carcinoma and hyperplastic nodule. J Comput Assist Tomogr 2002; 26: 451-455
  • 68 Vogl TJ, Hammerstingl R, Keck H et al. Differential diagnosis of focal liver lesions with MRI using the superparamagnetic contrast medium endorem. Radiologe 1995; 35: S258-S266
  • 69 Vogl TJ, Hammerstingl R, Schwarz W et al. Magnetic resonance imaging of focal liver lesions. Comparison of the superparamagnetic iron oxide resovist versus gadolinium-DTPA in the same patient. Invest Radiol 1996; 31: 696-708
  • 70 Kim YK, Kim CS, Han YM et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol 2010; 65: 358-365
  • 71 Neuwelt EA, Hamilton BE, Varallyay CG et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?. Kidney Int 2009; 75: 465-474
  • 72 Rodriguez E, Netto G, Li QK. Intrapancreatic accessory spleen: A case report and review of literature. Diagn Cytopathol 2012; 41: 466-469
  • 73 Anzai Y, Prince MR. Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imaging 1997; 7: 75-81
  • 74 Stets C, Brandt S, Wallis F et al. Axillary lymph node metastases: a statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging 2002; 16: 60-68
  • 75 Nguyen BC, Stanford W, Thompson BH et al. Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging 1999; 10: 468-473
  • 76 Pultrum BB, van der Jagt EJ, van Westreenen HL et al. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 2009; 9: 19-28
  • 77 Tokuhara T, Tanigawa N, Matsuki M et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer 2008; 11: 194-200
  • 78 Koh DM, Brown G, Temple L et al. Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings--initial observations. Radiology 2004; 231: 91-99
  • 79 Harisinghani MG, Saini S, Slater GJ et al. MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic iron oxide (Combidex): preliminary observations. J Magn Reson Imaging 1997; 7: 161-163
  • 80 Sigovan M, Boussel L, Sulaiman A et al. Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 2009; 252: 401-409
  • 81 Hahn PF, Stark DD, Ferrucci JT. Accumulation of iron oxide particles around liver metastases during MR imaging. Gastrointest Radiol 1992; 17: 173-174
  • 82 Moore A, Marecos E, Bogdanov A et al. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 2000; 214: 568-574
  • 83 Zimmer C, Weissleder R, Poss K et al. MR imaging of phagocytosis in experimental gliomas. Radiology 1995; 197: 533-538
  • 84 Kotoura N, Sakamoto K, Fukuda Y et al. Evaluation of magnetic resonance signal intensity in bone marrow after administration of super paramagnetic iron oxide (SPIO). Nihon Hoshasen Gijutsu Gakkai Zasshi 2011; 67: 212-220
  • 85 Fukuda Y, Ando K, Ishikura R et al. Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: differentiating bone metastasis and osteomyelitis. Magn Reson Med Sci 2006; 5: 191-196
  • 86 Herrmann KA, Zech CJ, Michaely HJ et al. Comprehensive magnetic resonance imaging of the small and large bowel using intraluminal dual contrast technique with iron oxide solution and water in magnetic resonance enteroclysis. Invest Radiol 2005; 40: 621-629
  • 87 Frericks BB, Wacker F, Loddenkemper C et al. Magnetic resonance imaging of experimental inflammatory bowel disease: quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C. Invest Radiol 2009; 44: 23-30
  • 88 Saleh A, Schroeter M, Jonkmanns C et al. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 2004; 127: 1670-1677
  • 89 Enochs WS, Harsh G, Hochberg F et al. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 1999; 9: 228-232
  • 90 Vellinga MM, Oude ERD, Seewann A et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 2008; 131: 800-807
  • 91 Weinstein JS, Varallyay CG, Dosa E et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 2010; 30: 15-35
  • 92 Saleh A, Schroeter M, Ringelstein A et al. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007; 38: 2733-2737
  • 93 Ruehm SG, Corot C, Vogt P et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103: 415-422
  • 94 Kooi ME, Cappendijk VC, Cleutjens KB et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107: 2453-2458
  • 95 Corot C, Petry KG, Trivedi R et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 2004; 39: 619-625
  • 96 Ahlstrom KH, Johansson LO, Rodenburg JB et al. Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 1999; 211: 865-869
  • 97 Nolte-Ernsting C, Adam G, Bucker A et al. Abdominal MR angiography performed using blood pool contrast agents: comparison of a new superparamagnetic iron oxide nanoparticle and a linear gadolinium polymer. Am J Roentgenol 1998; 171: 107-113
  • 98 Wagner M, Wagner S, Schnorr J et al. Coronary MR angiography using citrate-coated very small superparamagnetic iron oxide particles as blood-pool contrast agent: initial experience in humans. J Magn Reson Imaging 2011; 34: 816-823
  • 99 Schnorr J, Taupitz M, Schellenberger EA et al. Cardiac magnetic resonance angiography using blood-pool contrast agents: comparison of citrate-coated very small superparamagnetic iron oxide particles with gadofosveset trisodium in pigs. Fortschr Röntgenstr 2012; 184: 105-112
  • 100 Knollmann FD, Bock JC, Teltenkotter S et al. Evaluation of portal MR angiography using superparamagnetic iron oxide. J Magn Reson Imaging 1997; 7: 191-196
  • 101 Ono Y, Marukawa T, Ashikaga R et al. Three-dimensional MR angiography of HCC and portal and hepatic veins using superparamagnetic iron oxide. Nihon Igaku Hoshasen Gakkai Zasshi 1998; 58: 97-98
  • 102 Tanimoto A, Yuasa Y, Hiramatsu K. Enhancement of phase-contrast MR angiography with superparamagnetic iron oxide. J Magn Reson Imaging 1998; 8: 446-450
  • 103 Schmitz SA, Albrecht T, Wolf KJ. MR angiography with superparamagnetic iron oxide: feasibility study. Radiology 1999; 213: 603-607
  • 104 Lanzman RS, Schmitt P, Kropil P et al. Nonenhanced MR angiography techniques. Fortschr Röntgenstr 2011; 183: 913-924
  • 105 Turetschek K, Huber S, Helbich T et al. Dynamic MRI enhanced with albumin-(Gd-DTPA)30 or ultrasmall superparamagnetic iron oxide particles (NC100150 injection) for the measurement of microvessel permeability in experimental breast tumors. Acad Radiol 2002; 9: S112-S114
  • 106 Persigehl T, Wall A, Kellert J et al. Tumor blood volume determination by using susceptibility-corrected DeltaR2* multiecho MR. Radiology 2010; 255: 781-789
  • 107 Persigehl T, Bieker R, Matuszewski L et al. Antiangiogenic tumor treatment: early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 2007; 244: 449-456
  • 108 Kaufels N, Korn R, Wagner S et al. Magnetic resonance imaging of liver metastases: experimental comparison of anionic and conventional superparamagnetic iron oxide particles with a hepatobiliary contrast medium during dynamic and uptake phases. Invest Radiol 2008; 43: 496-503
  • 109 Bachmann R, Conrad R, Kreft B et al. Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J Magn Reson Imaging 2002; 16: 190-195
  • 110 Rudin M, Rausch M, Stoeckli M. Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods. Mol Imaging Biol 2005; 7: 5-13
  • 111 Hudson PJ, Souriau C. Engineered antibodies. Nat Med 2003; 9: 129-134
  • 112 Neumaier CE, Baio G, Ferrini S et al. MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori 2008; 94: 226-233
  • 113 Kelly KA, Allport JR, Tsourkas A et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 2005; 96: 327-336
  • 114 Artemov D, Mori N, Okollie B et al. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003; 49: 403-408
  • 115 Kresse M, Wagner S, Pfefferer D et al. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 1998; 40: 236-242
  • 116 Konda SD, Aref M, Wang S et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA 2001; 12: 104-113
  • 117 Hsieh WJ, Liang CJ, Chieh JJ et al. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles. Int J Nanomedicine 2012; 7: 2833-2842
  • 118 Zhang C, Jugold M, Woenne EC et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 2007; 67: 1555-1562
  • 119 Kiessling F, Huppert J, Zhang C et al. RGD-labeled USPIO inhibits adhesion and endocytotic activity of alpha v beta3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology 2009; 253: 462-469
  • 120 Moore A, Medarova Z, Potthast A et al. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 2004; 64: 1821-1827
  • 121 Leuschner C, Kumar CS, Hansel W et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99: 163-176
  • 122 Chopra A. Single-chain anti-epidermal growth factor receptor antibody fragment conjugated to magnetic iron oxide nanoparticles. 2004; s. Anhang – aus Molecular Imaging and Contrast Database (MICAD), Internet
  • 123 Vigor KL, Kyrtatos PG, Minogue S et al. Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 2010; 31: 1307-1315
  • 124 Poselt E, Schmidtke C, Fischer S et al. Tailor-made quantum dot and iron oxide based contrast agents for in vitro and in vivo tumor imaging. ACS Nano 2012; 6: 3346-3355
  • 125 He Y, Song W, Lei J et al. Anti-CXCR4 monoclonal antibody conjugated to ultrasmall superparamagnetic iron oxide nanoparticles in an application of MR molecular imaging of pancreatic cancer cell lines. Acta Radiol 2012; 53: 1049-1058
  • 126 Cheng KT. Ultrasmall superparamagnetic iron oxide-anti-CD20 monoclonal antibody. 2004; s. Anhang – aus Molecular Imaging and Contrast Database (MICAD), Internet
  • 127 Luchetti A, Milani D, Ruffini F et al. Monoclonal Antibodies Conjugated with Superparamagnetic Iron Oxide Particles Allow Magnetic Resonance Imaging Detection of Lymphocytes in the Mouse Brain. Mol Imaging 2011; s. Anhang (Epub ahead of print)
  • 128 Reimer P, Weissleder R, Lee AS et al. Receptor imaging: application to MR imaging of liver cancer. Radiology 1990; 177: 729-734
  • 129 Reimer P, Weissleder R, Shen T et al. Pancreatic receptors: initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 1994; 193: 527-531
  • 130 Zhao M, Beauregard DA, Loizou L et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001; 7: 1241-1244
  • 131 Schellenberger EA, Hogemann D, Josephson L et al. Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Acad Radiol 2002; 9: S310-S311
  • 132 Schellenberger E, Schnorr J, Reutelingsperger C et al. Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small 2008; 4: 225-230
  • 133 Smith BR, Heverhagen J, Knopp M et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 2007; 9: 719-727
  • 134 Briley-Saebo KC, Cho YS, Shaw PX et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 2011; 57: 337-347
  • 135 Tu C, Ng TS, Sohi HK et al. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials 2011; 32: 7209-7216
  • 136 McAteer MA, Akhtar AM, von Zur MuhlenC et al. An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 2010; 209: 18-27
  • 137 Wen S, Liu DF, Liu Z et al. OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice. J Lipid Res 2012; 53: 829-838
  • 138 Weissleder R, Lee AS, Khaw BA et al. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 1992; 182: 381-385
  • 139 Johansson LO, Bjornerud A, Ahlstrom HK et al. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 2001; 13: 615-618
  • 140 Duerschmied D, Meissner M, Peter K et al. Molecular magnetic resonance imaging allows the detection of activated platelets in a new mouse model of coronary artery thrombosis. Invest Radiol 2011; 46: 618-623
  • 141 Ariens RA, Lai TS, Weisel JW et al. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 2002; 100: 743-754
  • 142 Bulte JW, Ma LD, Magin RL et al. Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 1993; 29: 32-37
  • 143 Bulte JW, Laughlin PG, Jordan EK et al. Tagging of T cells with superparamagnetic iron oxide: uptake kinetics and relaxometry. Acad Radiol 1996; 3: S301-S303
  • 144 Bulte JW, Ben-Hur T, Miller BR et al. MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 2003; 50: 201-205
  • 145 Josephson L, Tung CH, Moore A et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 1999; 10: 186-191
  • 146 Frank JA, Zywicke H, Jordan EK et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 2002; 9: S484-A487
  • 147 Bulte JW, Douglas T, Witwer B et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001; 19: 1141-1147
  • 148 Arbab AS, Bashaw LA, Miller BR et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 2003; 76: 1123-1130
  • 149 Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 2003; 228: 480-487
  • 150 Crabbe A, Vandeputte C, Dresselaers T et al. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 2010; 19: 919-936
  • 151 Arbab AS, Yocum GT, Rad AM et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 2005; 18: 553-559
  • 152 Schafer R, Kehlbach R, Muller M et al. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy 2009; 11: 68-78
  • 153 Naqvi S, Samim M, Abdin M et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 2010; 5: 983-989
  • 154 Chen YC, Hsiao JK, Liu HM et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 2010; 245: 272-279
  • 155 Schafer R, Ayturan M, Bantleon R et al. The use of clinically approved small particles of iron oxide (SPIO) for labeling of mesenchymal stem cells aggravates clinical symptoms in experimental autoimmune encephalomyelitis and influences their in vivo distribution. Cell Transplant 2008; 17: 923-941
  • 156 Karussis D, Karageorgiou C, Vaknin-Dembinsky A et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187-1194
  • 157 Politi LS, Bacigaluppi M, Brambilla E et al. Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 2007; 25: 2583-2592
  • 158 Kustermann E, Roell W, Breitbach M et al. Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation. NMR Biomed 2005; 18: 362-370
  • 159 Bos C, Delmas Y, Desmouliere A et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 2004; 233: 781-789
  • 160 Daldrup-Link HE, Rudelius M, Piontek G et al. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 2005; 234: 197-205
  • 161 Ittrich H, Lange C, Togel F et al. In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J Magn Reson Imaging 2007; 25: 1179-1191
  • 162 van Buul GM, Kotek G, Wielopolski PA et al. Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PLoS One 2011; 6: e17001
  • 163 Cahill KS, Gaidosh G, Huard J et al. Noninvasive monitoring and tracking of muscle stem cell transplants. Transplantation 2004; 78: 1626-1633
  • 164 Arbab AS, Pandit SD, Anderson SA et al. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 2006; 24: 671-678
  • 165 Toso C, Vallee JP, Morel P et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 2008; 8: 701-706
  • 166 Daldrup-Link HE, Meier R, Rudelius M et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 2005; 15: 4-13
  • 167 Khurana A, Nejadnik H, Gawande R et al. Intravenous Ferumoxytol Allows Noninvasive MR Imaging Monitoring of Macrophage Migration into Stem Cell Transplants. Radiology 2012; 264: 803-811
  • 168 Daldrup-Link HE, Golovko D, Ruffell B et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 2011; 17: 5695-5704
  • 169 Truijers M, Futterer JJ, Takahashi S et al. In vivo imaging of the aneurysm wall with MRI and a macrophage-specific contrast agent. Am J Roentgenol Am J Roentgenol 2009; 193: W437-441
  • 170 Heyn C, Ronald JA, Mackenzie LT et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 2006; 55: 23-29
  • 171 Kanno S, Wu YJ, Lee PC et al. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 2001; 104: 934-938
  • 172 Zhang Y, Dodd SJ, Hendrich KS et al. Magnetic resonance imaging detection of rat renal transplant rejection by monitoring macrophage infiltration. Kidney Int 2000; 58: 1300-1310
  • 173 Lutz AM, Seemayer C, Corot C et al. Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging. Radiology 2004; 233: 149-157
  • 174 Kaim AH, Wischer T, O'Reilly T et al. MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats. Radiology 2002; 225: 808-814
  • 175 Gellissen J, Axmann C, Prescher A et al. Extra- and intracellular accumulation of ultrasmall superparamagnetic iron oxides (USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging. Magn Reson Imaging 1999; 17: 557-567
  • 176 Luciani A, Dechoux S, Deveaux V et al. Adipose tissue macrophages: MR tracking to monitor obesity-associated inflammation. Radiology 2012; 263: 786-793
  • 177 Dousset V, Delalande C, Ballarino L et al. In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn Reson Med 1999; 41: 329-333
  • 178 Floris S, Blezer EL, Schreibelt G et al. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 2004; 127: 616-627
  • 179 Luchetti A, Milani D, Ruffini F et al. Monoclonal antibodies conjugated with superparamagnetic iron oxide particles allow magnetic resonance imaging detection of lymphocytes in the mouse brain. Mol Imaging 2012; 11: 114-125
  • 180 Anderson SA, Shukaliak-Quandt J, Jordan EK et al. Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 2004; 55: 654-659
  • 181 Rausch M, Sauter A, Frohlich J et al. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 2001; 46: 1018-1022
  • 182 Oude EngberinkRD, Blezer EL, Hoff EI et al. MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes or free USPIO. J Cereb Blood Flow Metab 2008; 28: 841-851
  • 183 Zhu Y, Ling Y, Zhong J et al. Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide. Acta Radiol 2012; 53: 812-819
  • 184 Wadghiri YZ, Sigurdsson EM, Sadowski M et al. Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003; 50: 293-302
  • 185 Yang J, Wadghiri YZ, Hoang DM et al. Detection of amyloid plaques targeted by USPIO-Abeta1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging. Neuroimage 2011; 55: 1600-1609
  • 186 Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2002; 2: 11-18
  • 187 Schellenberger E. Bioresponsive nanosensors in medical imaging. J R Soc Interface 2010; 7: S83-S91
  • 188 Koh I, Josephson L. Magnetic nanoparticle sensors. Sensors 2009; 9: 8130-8145
  • 189 Perez JM, Josephson L, O’Loughlin T et al. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 2002; 20: 816-820
  • 190 Zhao M, Josephson L, Tang Y et al. Magnetic sensors for protease assays. Angew Chem Int Ed Engl 2003; 42: 1375-1378
  • 191 Louie AY, Huber MM, Ahrens ET et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000; 18: 321-325
  • 192 Schellenberger E, Rudloff F, Warmuth C et al. Protease-specific nanosensors for magnetic resonance imaging. Bioconjug Chem 2008; 19: 2440-2445
  • 193 Grimm J, Perez JM, Josephson L et al. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res 2004; 64: 639-643
  • 194 Perez JM, Grimm J, Josephson L et al. Integrated nanosensors to determine levels and functional activity of human telomerase. Neoplasia 2008; 10: 1066-1072
  • 195 Hamm B, Staks T, Taupitz M et al. Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imaging 1994; 4: 659-668
  • 196 Yoshikawa K, Sasaki Y, Ogawa N et al. Clinical application of AMI-25 (superparamagnetic iron oxide) for the MR imaging of hepatic tumors: a multicenter clinical phase III study. Nihon Igaku Hoshasen Gakkai Zasshi 1994; 54: 137-153
  • 197 Ros PR, Freeny PC, Harms SE et al. Hepatic MR imaging with ferumoxides: a multicenter clinical trial of the safety and efficacy in the detection of focal hepatic lesions. Radiology 1995; 196: 481-488
  • 198 Kopp AF, Laniado M, Dammann F et al. MR imaging of the liver with Resovist: safety, efficacy, and pharmacodynamic properties. Radiology 1997; 204: 749-756
  • 199 Bonnemain B. Pharmacokinetic and hemodynamic safety of two superparamagnetic agents, Endorem and Sinerem, in cirrhotic rats. Acad Radiol 1998; 5: S151-S153 discussion S156
  • 200 Kehagias DT, Gouliamos AD, Smyrniotis V et al. Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 2001; 14: 595-601
  • 201 Onishi H, Murakami T, Kim T et al. Safety of ferucarbotran in MR imaging of the liver: a pre- and postexamination questionnaire-based multicenter investigation. J Magn Reson Imaging 2009; 29: 106-111
  • 202 Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 2012; 41: 2575-2589
  • 203 Ito A, Kuga Y, Honda H et al. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004; 212: 167-175
  • 204 Hadjipanayis CG, Machaidze R, Kaluzova M et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 2010; 70: 6303-6312
  • 205 Liao C, Sun Q, Liang B et al. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 2011; 80: 699-705
  • 206 Shinkai M, Le B, Honda H et al. Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Jpn J Cancer Res 2001; 92: 1138-1145
  • 207 Sonvico F, Mornet S, Vasseur S et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 2005; 16: 1181-1188
  • 208 Liang S, Wang Y, Yu J et al. Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J Mater Sci Mater Med 2007; 18: 2297-2302
  • 209 Kohler N, Sun C, Wang J et al. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 2005; 21: 8858-8864
  • 210 Huang C, Tang Z, Zhou Y et al. Magnetic micelles as a potential platform for dual targeted drug delivery in cancer therapy. Int J Pharm 2012; 429: 113-122
  • 211 El-Dakdouki MH, Zhu DC, El-Boubbou K et al. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 2012; 13: 1144-1151
  • 212 Ernsting MJ, Foltz WD, Undzys E et al. Tumor-targeted drug delivery using MR-contrasted docetaxel – carboxymethylcellulose nanoparticles. Biomaterials 2012; 33: 3931-3941
  • 213 Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 2011; 63: 772-788
  • 214 Choi J, Kim HY, Ju EJ et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 2012; 33: 4195-4203
  • 215 Kemmner W, Moldenhauer G, Schlag P et al. Separation of tumor cells from a suspension of dissociated human colorectal carcinoma tissue by means of monoclonal antibody-coated magnetic beads. J Immunol Methods 1992; 147: 197-200
  • 216 Kronick P, Gilpin RW. Use of superparamagnetic particles for isolation of cells. J Biochem Biophys Methods 1986; 12: 73-80
  • 217 Scherer F, Anton M, Schillinger U et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9: 102-109
  • 218 Chanana M, Mao Z, Wang D. Using polymers to make up magnetic nanoparticles for biomedicine. J Biomed Nanotechnol 2009; 5: 652-668
  • 219 Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012; 7: 144
  • 220 Frimpong RA, Hilt JZ. Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 2010; 5: 1401-1414
  • 221 Plank C, Scherer F, Schillinger U et al. Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J Liposome Res 2003; 13: 29-32
  • 222 Krotz F, de Wit C, Sohn HY et al. Magnetofection – a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7: 700-710
  • 223 Shao H, Yoon TJ, Liong M et al. Magnetic nanoparticles for biomedical NMR-based diagnostics. Beilstein J Nanotechnol 2010; 1: 142-154
  • 224 Koh I, Hong R, Weissleder R et al. Sensitive NMR sensors detect antibodies to influenza. Angew Chem Int Ed Engl 2008; 47: 4119-4121
  • 225 Lee H, Yoon TJ, Weissleder R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew Chem Int Ed Engl 2009; 48: 5657-5660
  • 226 Haun JB, Castro CM, Wang R et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci Transl Med 2011; 3: 71ra16
  • 227 Lee H, Sun E, Ham D et al. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 2008; 14: 869-874
  • 228 Borgert J, Schmidt JD, Schmale I et al. Fundamentals and applications of magnetic particle imaging. J Cardiovasc Comput Tomogr 2012; 6: 149-153
  • 229 Weizenecker J, Gleich B, Rahmer J et al. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 2009; 54: L1-L10
  • 230 Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 2007; 52: 6363-6374
  • 231 Haegele J, Sattel T, Erbe M et al. Magnetic particle imaging (MPI). Fortschr Röntgenstr 2012; 184: 420-426