Rofo 2013; 185(10): 950-958
DOI: 10.1055/s-0033-1335428
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Whole-Body-MR-Diffusion Weighted Imaging in Oncology

Ganzkörper-MR-Diffusionsbildgebung in der Onkologie
T. Wilhelm
,
B. Stieltjes
,
H. P. Schlemmer
Further Information

Publication History

12 September 2012

18 March 2013

Publication Date:
02 September 2013 (online)

Abstract

The clinical implementation of whole body diffusion weighted imaging (WB-DWI) for tumor-detection, -characterization and therapy monitoring is well underway. The method is fast, robust and combined with its wide availability on modern MRI scanners, it has a vast potential clinical impact. Owing to the high tumor to background contrast, its main application areas are simple detection of tumor suspicious lesions (primary tumor, recurrence, and metastasis), tumor grading and therapy monitoring. WB-DWI has a strong diagnostic potential regarding the evaluation of bone marrow and its diseases and as thus, tumor detection and therapy monitoring of bone metastasis is of particular interest. The assessment of a lymphatic tumor spreading is constricted. One of the major hurdles that still hamper the wide clinical application of WB-DWI is a lack of standardization of measurement parameters that limit the comparability of current research results.

Key Points:

  • Owing to the high tumor to background contrast WB-DWI allows fast assessment of tumor distribution and total tumor burden.

  • WB-DWI allows therapy monitoring.

  • WB-DWI is widely available.

Citation Format:

  • Wilhelm T, Stieltjes B, Schlemmer HP. Whole-Body-MR-Diffusion Weighted Imaging in Oncology. Fortschr Röntgenstr 2013; 185: 950-958

Zusammenfassung

Die Ganzkörper-Diffusionsbildgebung (GK-DWI) befindet sich aktuell auf dem Weg, ein praxistaugliches Instrument der Detektion und Charakterisierung von Tumoren und des Therapiemonitorings zu werden. In Zukunft ist aufgrund der robusten Technologie, der schnellen Durchführbarkeit und der Möglichkeit der Implementierung der entsprechenden Protokolle an den meisten modernen MRT-Geräten eine weitverbreitete klinische Anwendung zu erwarten. Die Anwendungsmöglichkeiten liegen aufgrund des hohen Tumor-zu-Normalgewebe-Kontrasts in der vereinfachten Detektion tumorsuspekter Läsionen (Primärtumor, Rezidiv, Metastasen) sowie im Tumorgrading und im Therapiemonitoring. Besondere Eigenschaften sind der GK-DWI in der diagnostischen Beurteilung sowie im Therapieansprechen des Knochenmarks und seiner Erkrankungen zuzuschreiben, sodass ein potenziell großes Anwendungsgebiet in der Detektion und dem Therapiemonitoring ossärer Tumorausbreitungen liegen könnte. Die Beurteilung einer lymphatischen Tumorausbreitung ist nur eingeschränkt möglich. Das Hauptproblem in der praktischen Umsetzung der GK-DWI besteht aktuell allerdings noch in der fehlenden Standardisierung der Sequenzparameter und der damit verbundenen fehlenden Vergleichbarkeit von Studienergebnissen.

Deutscher Artikel/German Article

 
  • References

  • 1 Schlemmer HP et al. Fast whole-body assessment of metastatic disease using a novel magnetic resonance imaging system: initial experiences. Invest Radiol 2005; 40: 64-71
  • 2 Ruehm SG et al. Whole-body MRA on a rolling table platform (AngioSURF). Fortschr Röntgenstr 2000; 172: 670-674
  • 3 Eustace S et al. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. Am J Roentgenol 1997; 169: 1655-1661
  • 4 Jones SC et al. Magnetic resonance diffusion-weighted imaging: sensitivity and apparent diffusion constant in stroke. Acta Neurochir Suppl 1994; 60: 207-210
  • 5 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 2007; 188: 1622-1635
  • 6 Takahara T et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004; 22: 275-282
  • 7 Kwee TC et al. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 2008; 18: 1937-1952
  • 8 Curvo-Semedo L et al. Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging 2012; 35: 1365-1371
  • 9 Padhani AR et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102-125
  • 10 Sankowski AJ et al. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med Sci Monit 2012; 18: MT33-MT40
  • 11 Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 2007; 25: 4104-4109
  • 12 Laun FB et al. Introduction to the basic principles and techniques of diffusion-weighted imaging. Radiologe 2011; 51: 170-179
  • 13 Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011; 261: 700-718
  • 14 Le Bihan D et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401-407
  • 15 Lenz C et al. Assessing extracranial tumors using diffusion-weighted whole-body MRI. Z Med Phys 2011; 21: 79-90
  • 16 Ballon D et al. Imaging therapeutic response in human bone marrow using rapid whole-body MRI. Magn Reson Med 2004; 52: 1234-1238
  • 17 Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology, Part 2. Skeletal Radiol 2007; 36: 1017-1027
  • 18 Goodsitt MM et al. The composition of bone marrow for a dual-energy quantitative computed tomography technique. A cadaver and computer simulation study. Invest Radiol 1994; 29: 695-704
  • 19 Hausmann D et al. Whole-body MRI in preoperative diagnostics of breast cancer – a comparison with [corrected] staging methods according to the S 3 guidelines. Fortschr Röntgenstr 2011; 183: 1130-1137
  • 20 Messiou C et al. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol 2011; 21: 1713-1718
  • 21 Ley S et al. Neuroblastoma imaging. Fortschr Röntgenstr 2011; 183: 217-225
  • 22 Manenti G et al. Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med 2008; 113: 199-213
  • 23 Woodfield CA et al. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. Am J Roentgenol 2010; 194: W316-W322
  • 24 Kwee TC et al. ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol 2010; 75: 215-220
  • 25 Thoeny HC et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 2009; 55: 761-769
  • 26 Lin G et al. Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T. J Magn Reson Imaging 2008; 28: 128-135
  • 27 Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging 2012; 35: 257-279
  • 28 Ono K et al. Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 2009; 29: 336-340
  • 29 Chen Y et al. The clinical application of whole-body diffusion-weighted imaging in the early assessment of chemotherapeutic effects in lymphoma: the initial experience. Magn Reson Imaging 2012; 30: 165-170
  • 30 Yagci AB et al. The value of diffusion-weighted MRI for prostate cancer detection and localization. Diagn Interv Radiol 2011; 17: 130-134
  • 31 Thormer G et al. Diagnostic value of ADC in patients with prostate cancer: influence of the choice of b values. Eur Radiol 2012; 22: 1820
  • 32 Hilario A et al. The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. Am J Neuroradiol 2012; 33: 701-707
  • 33 Lambregts DM et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 2011; 21: 2567-2574
  • 34 Nakanishi M et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma. Ann Surg Oncol 2012; 19: 1302-1309
  • 35 Moffat BA et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 2005; 102: 5524-5529
  • 36 Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI – a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 2008; 5: 220-233
  • 37 Paran Y et al. Water diffusion in the different microenvironments of breast cancer. NMR Biomed 2004; 17: 170-180
  • 38 Sun YS et al. Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 2010; 254: 170-178
  • 39 Dzik-Jurasz A et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 2002; 360: 307-308
  • 40 Byun WM et al. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. Am J Neuroradiol 2002; 23: 906-912
  • 41 Ballon D et al. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR Biomed 2000; 13: 321-328
  • 42 Reischauer C et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps – initial observations. Radiology 2010; 257: 523-531
  • 43 Messiou C, de Souza NM. Diffusion Weighted Magnetic Resonance Imaging of metastatic bone disease: A biomarker for treatment response monitoring. Cancer Biomark 2010; 6: 21-32
  • 44 Hayashida Y et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur Radiol 2006; 16: 2637-2643
  • 45 Cui Y et al. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 2008; 248: 894-900
  • 46 De Keyzer F et al. Dynamic contrast-enhanced and diffusion-weighted MRI for early detection of tumoral changes in single-dose and fractionated radiotherapy: evaluation in a rat rhabdomyosarcoma model. Eur Radiol 2009; 19: 2663-2671
  • 47 Larocque MP et al. Monitoring T2 and ADC at 9.4 T following fractionated external beam radiation therapy in a mouse model. Phys Med Biol 2010; 55: 1381-1393
  • 48 Jung SH et al. Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 Tesla MR imaging. J Magn Reson Imaging 2012; 35: 110-116
  • 49 Kwee TC et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol 2009; 70: 409-417
  • 50 Kawamura E et al. Clinical role of FDG-PET for HCC: relationship of glucose metabolic indicator to Japan Integrated Staging (JIS) score. Hepatogastroenterology 2008; 55: 582-586
  • 51 Picchio M et al. Positive [11C]choline and negative [18F]FDG with positron emission tomography in recurrence of prostate cancer. Am J Roentgenol 2002; 179: 482-484
  • 52 Gulyas B, Nyary I, Borbely K. FDG, MET or CHO? The quest for the optimal PET tracer for glioma imaging continues. Nat Clin Pract Neurol 2008; 4: 470-471
  • 53 Kwee TC et al. Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 2010; 51: 1549-1558
  • 54 Mori T et al. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 2008; 3: 358-364
  • 55 Ho KC et al. Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging 2009; 36: 200-208
  • 56 Schwenzer NF et al. Application of MR/PET in oncologic imaging. Fortschr Röntgenstr 2012; 184: 780-787
  • 57 Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology 2010; 256: 348-364
  • 58 Smith-Bindman R. Is computed tomography safe?. N Engl J Med 2010; 363: 1-4
  • 59 Schaefer JF, Kramer U. Whole-body MRI in children and juveniles. Fortschr Röntgenstr 2011; 183: 24-36
  • 60 Klasen J, Antoch G, Blondin D. MR imaging of the abdomen in pregnancy. Fortschr Röntgenstr 2011; 183: 514-522