Ultraschall Med 2013; 34(2): 169-184
DOI: 10.1055/s-0033-1335205
Guideline
© Georg Thieme Verlag KG Stuttgart · New York

EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology

J. Bamber
1   The Joint Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
,
D. Cosgrove
2   Div. of Radiology, Imperial and Kings Colleges, London, UK
,
C. F. Dietrich
3   Div. Gastroenterology & Oncology, Caritas Krankenhaus, Bad Mergentheim, Germany
,
J. Fromageau
1   The Joint Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
,
J. Bojunga
4   Department of Internal Medicine I, Endocrinology and Diabetology, Goethe-University, Frankfurt, Germany
,
F. Calliada
5   Div. of Radiology, University of Pavia, Policlinico San Matteo, Italy
,
V. Cantisani
6   Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Univ. Sapienza, Rome, Italy
,
J.-M. Correas
7   Adult Radiology, Paris Descartes University & Necker University Hospital, France, Institut Langevin – Ondes et Images ESPCI Paris Tech, CNRS UMR 7587 INSERM U 979
,
M. D’Onofrio
8   Department of Radiology, GB Rossi University Hospital, University of Verona, Italy
,
E. E. Drakonaki
9   Radiologist, University Hospital Heraklion, Crete, Greece
,
M. Fink
10   Ecole Supérieure de Physique et de Chimie de la Ville de Paris, France
,
M. Friedrich-Rust
11   Department of Internal Medicine I, Gastroenterology and Hepatology, Goethe-University, Frankfurt, Germany
,
O. H. Gilja
12   National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway and Department of Clinical Medicine, University of Bergen, Norway
,
R. F. Havre
13   National Centre for Ultrasound in Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
,
C. Jenssen
14   Department of Internal Medicine, Krankenhaus Märkisch Oderland, Strassberg, Germany
,
A. S. Klauser
15   Department of Radiology, Innsbruck Medical University, Austria
,
R. Ohlinger
16   Department of Obstetrics and Gynecology, Breast unit, University Greifswald, Germany
,
A. Saftoiu
17   Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Romania
,
F. Schaefer
18   Unit of Breast Imaging and Interventions, University Hospital Schleswig-Holstein Campus Kiel, Germany
,
I. Sporea
19   Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeş” Timişoara, Romania
,
F. Piscaglia
20   Div. Internal Medicine, University of Bologna, Bologna Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. April 2013 (online)

Abstract

The technical part of these Guidelines and Recommendations, produced under the auspices of EFSUMB, provides an introduction to the physical principles and technology on which all forms of current commercially available ultrasound elastography are based. A difference in shear modulus is the common underlying physical mechanism that provides tissue contrast in all elastograms. The relationship between the alternative technologies is considered in terms of the method used to take advantage of this. The practical advantages and disadvantages associated with each of the techniques are described, and guidance is provided on optimisation of scanning technique, image display, image interpretation and some of the known image artefacts.

Zusammenfassung

Der technische Teil dieser Leitlinien und Empfehlungen, der unter der Federführung der EFSUMB entstanden ist, enthält eine Einleitung zu allen physikalischen Grundlagen und Methoden der aktuell kommerziell erhältlichen Ultraschall-Elastografie-Technologien. Unterschiede in der Schersteifigkeit sind der wesentliche physikalische Mechanismus, dem der Gewebekontrast in allen Elastogrammen zu Grunde liegt. Die Beziehung zu alternativen Technologien wird und die Vorteile der angewandten Methode herausgearbeitet. Die praktischen Vorteile und Nachteile jeder Technik werden beschrieben und Empfehlungen zur Optimierung der Scantechnik, der Bildqualität und der Bildinterpretation gegeben, ebenso werden einige der bekannten Artefakte dargestellt.

Appendix

 
  • References

  • 1 Wilkins RH. Neurosurgical Classic. Xvii. J Neurosurg 1964; 21: 240-244
  • 2 Claudon M, Dietrich CF, Choi BI et al. Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver – Update 2012. Ultraschall in Med 2013; 34: 11-29
  • 3 Piscaglia F, Nolsoe C, Dietrich CF et al. The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall in Med 2012; 33: 33-59
  • 4 Cosgrove D, Piscaglia F, Dietrich CF et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Elastography. Part 2: Clinical Applications. Ultraschall in Med 2013; in press
  • 5 Hoskins PR. In: Hoskins PR, Thrush A, Martin K, et al. (eds) Diagnostic ultrasound physics and equipment. London: Greenwich Medical Media; 2003
  • 6 Hill CR. In: Hill CR, Bamber JC, ter HaarGR, (eds) Physical Principles of Medical Ultrasonics. 2nd ed. Chichester: John Wiley; 2004
  • 7 Szabo TL. Diagnostic ultrasound imaging: inside out. Burlington: Elsevier Academic Press; 2004
  • 8 Shung KK. Diagnostic ultrasound: imaging and blood flow measurement. Boca Raton: CRC Press; 2006
  • 9 Cobbold RSC. Foundations of biochemical ultrasound. Oxford: Oxford University Press; 2007
  • 10 Bamber JC, Miller N, Tristam M. Diagnostic ultrasound. In: Flower MA, (ed) Webb’s Physics of Medical Imaging. Bristol: Taylor & Francis; 2012
  • 11 Odegaard S, Gilja OH, Gregersen H. Basic and new aspects of gastrointestinal ultrasonography. In: Odegaard S, Gilja OH, Gregersen H, (eds) Singapore: Wold Scientific Publisher; 2005
  • 12 Sarvazyan A, Hill CR. Physical chemistry of the ultrasound-tissue intereaction. In: Hill CR, Bamber JC, ter HaarGR, (eds) Physical Principles of Medical Ultrasonics. 2nd ed. Chichester: John Wiley; 2004: 223-235
  • 13 Eckersley RJ, Bamber JC. Methodology for imaging time-dependent phenomena. In: Hill CR, Bumber JC, ter Haar GR, (eds) Physical Principles of Medical Ultrasonics. 2nd ed. Chichester: John Wiley; 2004: 304-335
  • 14 Housden RJ, Chen L, Gee AH et al. A new method for the acquisition of ultrasonic strain image volumes. Ultrasound Med Biol 2011; 37: 434-441
  • 15 Sutherland GR, Stewart MJ, Groundstroem KW et al. Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 1994; 7: 441-458
  • 16 Gilja OH, Heimdal A, Hausken T et al. Strain during gastric contractions can be measured using Doppler ultrasonography. Ultrasound Med Biol 2002; 28: 1457-1465
  • 17 Ahmed AB, Matre K, Hausken T et al. Rome III subgroups of functional dyspepsia exhibit different characteristics of antral contractions measured by strain rate imaging – a pilot study. Ultraschall in Med 2012; 33: E233-E240
  • 18 Thitaikumar A, Ophir J. Effect of lesion boundary conditions on axial strain elastograms: a parametric study. Ultrasound Med Biol 2007; 33: 1463-1467
  • 19 Chakraborty A, Bamber JC, Dorward NL. Slip elastography: a novel method for visualising and characterizing adherence between two surfaces in contact. Ultrasonics 2012; 52: 364-376
  • 20 Garcia L, Fromageau J, Bamber J et al. Further characterisation of changes in axial strain elastograms due to the presence of slippery tumor boundaries part 1: simulation study. In: Proceedings of the Ninth International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity.. Snowbird, Utah, USA: www.elasticityconference.org/prior_conf/2010/2010conf.htm 2010. 114.
  • 21 Garcia L, Fromageau J, Bamber J et al. Further characterisation of changes in axial strain elastograms due to the presence of slippery tumor boundaries part 2: experimental verification. In: Proceedings of the Ninth International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity.. Snowbird, Utah, USA: International Tissue Elasticity Conference; www.elasticityconference.org/prior_conf/2010/2010conf.htm 2010. 115.
  • 22 Goenezen S, Dord JF, Sink Z et al. Linear and nonlinear elastic modulus imaging: an application to breast cancer diagnosis. IEEE Trans Med Imaging 2012; 31: 1628-1637
  • 23 Krouskop TA, Wheeler TM, Kallel F et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 1998; 20: 260-274
  • 24 Oberai AA, Gokhale NH, Goenezen S et al. Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys Med Biol 2009; 54: 1191-1207
  • 25 Berry GP, Bamber JC, Mortimer PS et al. The spatio-temporal strain response of oedematous and nonoedematous tissue to sustained compression in vivo. Ultrasound Med Biol 2008; 34: 617-629
  • 26 Qiu Y, Sridhar M, Tsou JK et al. Ultrasonic viscoelasticity imaging of nonpalpable breast tumors: preliminary results. Acad Radiol 2008; 15: 1526-1533
  • 27 Ophir J, Alam SK, Garra BS et al. Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrasonics 2003; 29: 155-171
  • 28 Ponnekanti H, Ophir J, Huang Y et al. Fundamental mechanical limitations on the visualization of elasticity contrast in elastography. Ultrasound Med Biol 1995; 21: 533-543
  • 29 Varghese T, Ophir J. A theoretical framework for performance characterization of elastography: the strain filter. IEEE Trans Ultrason Ferroelectr Freq Control 1997; 44: 164-172
  • 30 Doyley MM, Bamber JC, Fuechsel F et al. A freehand elastographic imaging approach for clinical breast imaging: system development and performance evaluation. Ultrasound Med Biol 2001; 27: 1347-1357
  • 31 Havre RF, Elde E, Gilja OH et al. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations. Ultrasound Med Biol 2008; 34: 1638-1650
  • 32 Barr RG, Lackey AE. The utility of the “bull’s-eye” artifact on breast elasticity imaging in reducing breast lesion biopsy rate. Ultrasound Q 2011; 27: 151-155
  • 33 Miller NR, Bamber JC. Thresholds for visual detection of Young’s modulus contrast in simulated ultrasound image movies. Phys Med Biol 2000; 45: 2057-2079
  • 34 Doyley MM. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys Med Biol 2012; 57: R35-R73
  • 35 Havre RF, Waage JR, Gilja OH et al. Real-time elastography: strain ratio measurements are influenced by the position of the reference area. Ultraschall in Med 2012; 33: 559-568
  • 36 Sarvazyan AP, Rudenko OV, Swanson SD et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 1998; 24: 1419-1435
  • 37 Nightingale K, Soo MS, Nightingale R et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28: 227-235
  • 38 Palmeri ML, Nightingale KR. Acoustic radiation force-based elasticity imaging methods. Interface Focus 2011; 1: 553-564
  • 39 Melodelima D, Bamber JC, Duck FA et al. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography. Ultrasound Med Biol 2007; 33: 959-969
  • 40 Meng W, Zhang G, Wu C et al. Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound Med Biol 2011; 37: 1436-1443
  • 41 Sandrin L, Tanter M, Gennisson JL et al. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 436-446
  • 42 Castera L, Vergniol J, Foucher J et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005; 128: 343-350
  • 43 Foucher J, Chanteloup E, Vergniol J et al. Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut 2006; 55: 403-408
  • 44 Fraquelli M, Rigamonti C, Casazza G et al. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 2007; 56: 968-973
  • 45 Rockey DC. Noninvasive assessment of liver fibrosis and portal hypertension with transient elastography. Gastroenterology 2008; 134: 8-14
  • 46 Nightingale K, Palmeri M, Trahey G. Analysis of contrast in images generated with transient acoustic radiation force. Ultrasound Med Biol 2006; 32: 61-72
  • 47 Palmeri ML, Wang MH, Rouze NC et al. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 2011; 55: 666-672
  • 48 Bercoff J, Pernot M, Tanter M et al. Monitoring thermally-induced lesions with supersonic shear imaging. Ultrason Imaging 2004; 26: 71-84
  • 49 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 396-409
  • 50 Tanter M, Bercoff J, Athanasiou A et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 2008; 34: 1373-1386
  • 51 Muller M, Gennisson JL, Deffieux T et al. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study. Ultrasound Med Biol 2009; 35: 219-229
  • 52 Bavu E, Gennisson JL, Couade M et al. Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol 2011; 37: 1361-1373
  • 53 Deffieux T, Montaldo G, Tanter M et al. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans Med Imaging 2009; 28: 313-322
  • 54 Palmeri ML, Nightingale KR. On the thermal effects associated with radiation force imaging of soft tissue. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51: 551-565
  • 55 Skurczynski MJ, Duck FA, Shipley JA et al. Evaluation of experimental methods for assessing safety for ultrasound radiation force elastography. Br J Radiol 2009; 82: 666-674
  • 56 Tabaru M, Yoshikawa H, Azuma T et al. Experimental study on temperature rise of acoustic radiation force elastography. J Med Ultrasonics 2012; 39: 137-146
  • 57 Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8: 1521-1549
  • 58 Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 2011; 56: R1-R29
  • 59 Bamber JC. Ultrasound elasticity imaging: definition and technology. Eur Radiol 1999; 9: S327-S330
  • 60 Bamber JC, Barbone PE, Bush NL et al. Progress in freehand elastography of the breast. IEICE Trans Inf Syst 2002; 85: 5-14
  • 61 Gao L, Parker KJ, Lerner RM et al. Imaging of the elastic properties of tissue – a review. Ultrasound Med Biol 1996; 22: 959-977
  • 62 Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 2003; 5: 57-78
  • 63 Ophir J, Alam SK, Garra B et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H 1999; 213: 203-233
  • 64 Ophir J, Garra B, Kallel F et al. Elastographic imaging. Ultrasound Med Biol 2000; 26: S23-S29
  • 65 Kolen AF. Elasticity imaging for monitoring thermal ablation therapy in liver. In: PhD Thesis: University of London; 2003
  • 66 Brusseau E, Detti V, Coulon A et al. A two-dimensional locally regularized strain estimation technique: preliminary clinical results for the assessment of benign and malignant breast lesions. In: D’hooge J, Doyley M, (eds) Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy. Lake buena vista, Florida: SPIE Proceedings; 2011: 79680J
  • 67 Uff C, Garcia L, Fromageau J et al. Real-time ultrasound elastography in neurosurgery. In: Yuhas MP, (ed) 2009 IEEE International Ultrasonics Symposium. Rome: 2009: 467-470
  • 68 Lindop JE, Treece GM, Gee AH et al. An intelligent interface for freehand strain imaging. Ultrasound Med Biol 2008; 34: 1117-1128