Rofo 2013; 185(11): 1041-1055
DOI: 10.1055/s-0033-1335170
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Achillodynia – Radiological Imaging of Acute and Chronic Overuse Injuries of the Achilles Tendon

Achillodynie – Radiologische Bildgebung bei akuten und chronischen Überlastungsschäden der Achillessehne
R. Syha
1   Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen
3   Section on Experimental Radiology, Eberhard-Karls-University, Tübingen
,
F. Springer
1   Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen
3   Section on Experimental Radiology, Eberhard-Karls-University, Tübingen
,
D. Ketelsen
1   Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen
,
I. Ipach
2   Orthopaedic Surgery, University Hospital Tübingen
,
U. Kramer
1   Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen
,
M. Horger
1   Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen
,
F. Schick
3   Section on Experimental Radiology, Eberhard-Karls-University, Tübingen
,
U. Grosse
1   Diagnostic and Interventional Radiology, Eberhard-Karls-University, Tübingen
3   Section on Experimental Radiology, Eberhard-Karls-University, Tübingen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

18. Oktober 2012

30. Januar 2013

Publikationsdatum:
25. Juli 2013 (online)

Abstract

In the past decades the incidence of acute and chronic disorders of the Achilles tendon associated with sport-induced overuse has steadily increased. Besides acute complete or partial ruptures, achillodynia (Achilles tendon pain syndrome), which is often associated with tendon degeneration, represents the most challenging entity regarding clinical diagnostics and therapy. Therefore, the use of imaging techniques to differentiate tendon disorders and even characterize structure alterations is of growing interest. This review article discusses the potential of different imaging techniques with respect to the diagnosis of acute and chronic tendon disorders. In this context, the most commonly used imaging techniques are magnetic resonance imaging (MRI), B-mode ultrasound, and color-coded Doppler ultrasound (US). These modalities allow the detection of acute tendon ruptures and advanced chronic tendon disorders. However, the main disadvantages are still the low capabilities in the detection of early-stage degeneration and difficulties in the assessment of treatment responses during follow-up examinations. Furthermore, differentiation between chronic partial ruptures and degeneration remains challenging. The automatic contour detection and texture analysis may allow a more objective and quantitative interpretation, which might be helpful in the monitoring of tendon diseases during follow-up examinations. Other techniques to quantify tendon-specific MR properties, e. g. based on ultrashort echo time (UTE) sequences, also seem to have great potential with respect to the precise detection of degenerative tendon disorders and their differentiation at a very early stage.

Key Points:

  • For radiological imaging in the clinical routine, different clinical presentations of acute or chronic overuse injuries of the Achilles tendon must be considered.

  • In addition to qualitative morphological imaging criteria, supplementary quantitative criteria (planimetry/volumetry) of the Achilles tendon seem to be significant with respect to the differentiation between symptomatic and asymptomatic Achilles tendons.

  • Other techniques to quantify tendon-specific MR properties, e. g. based on ultrashort echo time (UTE) sequences, seem to have great potential with respect to the precise detection of degenerative tendon disorders and their differentiation at a very early stage.

Citation Format:

  • Syha R., Springer F., Ketelsen D. et al. Achillodynia – Radiological Imaging of Acute and Chronic Overuse Injuries of the Achilles Tendon. Fortschr Röntgenstr 2013; 185: 1041 – 1055

Zusammenfassung

Innerhalb der letzten Jahrzehnte hat die Inzidenz von akuten und chronischen Überlastungsschäden der Achillessehne stetig zugenommen. Die deutliche Zunahme in den letzten Dekaden lässt sich in erster Linie durch die erhöhte Freizeitaktivität in der Bevölkerung begründen. Neben den akuten Teil- oder Komplettrupturen der Achillessehne stellt die Achillodynie (Schmerzsyndrom der Achillessehne), welche häufig mit einer Sehnendegeneration einhergeht, eine Herausforderung für Diagnostik und Therapie dar. In diesem Zusammenhang hat der Einsatz von bildgebenden Verfahren zur Diagnostik und Charakterisierung sehnenspezifischer Veränderungen deutlich zugenommen. Im folgenden Übersichtsartikel werden die Möglichkeiten der aktuellen radiologischen Bildgebung bezüglich akuter und chronischer Überlastungsschäden der Achillessehne erörtert. Gängige bildgebende Verfahren stellen hier die Magnetresonanztomografie (MRT) sowie der B-Mode- und farbkodierte Ultraschall (US) dar. Hiermit lassen sich Komplettrupturen und fortgeschrittene degenerative Veränderungen gut detektieren. Schwächen haben die genannten Verfahren in der Diagnostik von Frühstadien der Tendinose und der Verlaufsbeurteilung unter Therapie. Die eindeutige Differenzierung zwischen chronischer Partialruptur und Tendinose kann eine Herausforderung darstellen. Neue automatisierte Konturerkennungsverfahren und Texturanalysen erlauben darüber hinaus auch eine quantitative Beurteilung der Achillessehne, was die objektive Beurteilung von Strukturänderungen im Krankheitsverlauf erleichtern und in seiner Qualität verbessern könnte. Weiterhin scheinen neue Methoden zur quantitativen, MR-tomografischen Charakterisierung des tendinösen Gewebes, z. B. mithilfe ultrakurzer Echozeiten (UTE), ein großes Potenzial zur frühzeitigen Erkennung und Verlaufsbeurteilung von degenerativen Veränderungen der Achillessehne zu haben.

Deutscher Artikel/German Article

 
  • References

  • 1 Paavola M, Kannus P, Jarvinen TA et al. Achilles tendinopathy. J Bone Joint Surg Am 2002; 84: 2062-2076
  • 2 Riley G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology 2004; 43: 131-142
  • 3 Cheung Y, Rosenberg ZS, Magee T et al. Normal anatomy and pathologic conditions of ankle tendons: current imaging techniques. Radiographics 1992; 12: 429-444
  • 4 Kälebo P, Goksör L, Swärd L et al. Soft-tissue radiography, computed tomography, and ultrasonography of partial Achilles tendon ruptures. Acta Radiol 1990; 31: 565-570
  • 5 Ohashi K, El-Khoury GY, Bennett DL. MDCT of Tendon Abnormalities Using Volume-Rendered Images. American Journal of Roentgenology 2004; 182: 161-165
  • 6 Pierre-Jerome C, Moncayo V, Terk MR. MRI of the achilles tendon: A comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies. Acta Radiologica 2010; 51: 438-454
  • 7 Pavlov H, Heneghan MA, Hersh A et al. The Haglund syndrome: initial and differential diagnosis. Radiology 1982; 144: 83-88
  • 8 Martinoli C, Bianchi S, Dahmane M et al. Ultrasound of tendons and nerves. Eur Radiol 2002; 12: 44-55
  • 9 O’Connor PJ, Grainger AJ, Morgan SR et al. Ultrasound assessment of tendons in asymptomatic volunteers: a study of reproducibility. Eur Radiol 2004; 14: 1968-1973
  • 10 Grassi W, Filippucci E, Farina A et al. Sonographic imaging of tendons. Arthritis Rheum 2000; 43: 969-976
  • 11 Kainberger F, Frühwald F, Engel A et al. Die Sonographie der Achillessehne und ihres Gleitlagers. Fortschr Röntgenstr 1988; 148: 394-397
  • 12 Fornage BD. The hypoechoic normal tendon. A pitfall. Journal of Ultrasound in Medicine 1987; 6: 19-22
  • 13 Fredberg U, Bolvig L, Andersen NT et al. Ultrasonography in evaluation of Achilles and patella tendon thickness. Ultraschall in Med 2008; 29: 60-65
  • 14 Syha R, Peters M, Birnesser H et al. Computer-based quantification of the mean Achilles tendon thickness in ultrasound images: effect of tendinosis. Br J Sports Med 2007; 41: 897-902
  • 15 Sengkerij PM, de Vos RJ, Weir A et al. Interobserver reliability of neovascularization score using power Doppler ultrasonography in midportion achilles tendinopathy. Am J Sports Med 2009; 37: 1627-1631
  • 16 Richards PJ, Win T, Jones PW. The distribution of microvascular response in Achilles tendonopathy assessed by colour and power Doppler. Skeletal Radiology 2005; 34: 336-342
  • 17 Collins MS, Felmlee JP. 3T magnetic resonance imaging of ankle and hindfoot tendon pathology. Top Magn Reson Imaging 2009; 20: 175-188
  • 18 Gold GE, Han E, Stainsby J et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol 2004; 183: 343-351
  • 19 Mantel D, Flautre B, Bastian D et al. Structural MRI study of the Achilles tendon. Correlation with microanatomy and histology. J Radiol 1996; 77: 261-265
  • 20 Aström M, Rausing A. Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop Relat Res 1995; 316: 151-164
  • 21 Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med 1992; 11: 533-578
  • 22 Schweitzer ME, Karasick D. MR Imaging of Disorders of the Achilles Tendon. American Journal of Roentgenology 2000; 175: 613-625
  • 23 Stiskal M, Neuhold A, Weinstabl R et al. MR-tomographische Befunde bei Achillodynie. Fortschr Röntgenstr 1990; 153: 9-13
  • 24 Weber C, Wedegärtner U, Maas LC et al. MR-Tomografie der Achillessehne: Evaluation von Kriterien zur Differenzierung von asymptomatischen und symptomatischen Sehnen. Fortschr Röntgenstr 2011; 183: 631-640
  • 25 Hirschmüller A, Frey V, Deibert P et al. Powerdopplersonografische Befunde der Achillessehnen von 953 Langstreckenläufern – eine Querschnittsstudie. Ultraschall in Med 2010; 31: 387-393
  • 26 Öhberg L, Alfredson H. Ultrasound guided sclerosis of neovessels in painful chronic Achilles tendinosis: pilot study of a new treatment. British Journal of Sports Medicine 2002; 36: 173-175
  • 27 de Vos RJ, Weir A, Cobben LPJ et al. The Value of Power Doppler Ultrasonography in Achilles Tendinopathy. The American Journal of Sports Medicine 2007; 35: 1696-1701
  • 28 Zanetti M, Metzdorf A, Kundert HP et al. Achilles Tendons: Clinical Relevance of Neovascularization Diagnosed with Power Doppler US1. Radiology 2003; 227: 556-560
  • 29 Haims AH, Schweitzer ME, Patel RS et al. MR imaging of the Achilles tendon: overlap of findings in symptomatic and asymptomatic individuals. Skeletal Radiology 2000; 29: 640-645
  • 30 Tsouli SG, Xydis V, Argyropoulou MI et al. Regression of Achilles tendon thickness after statin treatment in patients with familial hypercholesterolemia: an ultrasonographic study. Atherosclerosis 2009; 205: 151-155
  • 31 Dussault RG, Kaplan PA, Roederer G. MR imaging of Achilles tendon in patients with familial hyperlipidemia: comparison with plain films, physical examination, and patients with traumatic tendon lesions. American Journal of Roentgenology 1995; 164: 403-407
  • 32 Paavola M, Paakkala T, Kannus P et al. Ultrasonography in the differential diagnosis of Achilles tendon injuries and related disorders. A comparison between pre-operative ultrasonography and surgical findings. Acta Radiol 1998; 39: 612-619
  • 33 Alfredson H, Masci L, Öhberg L. Partial mid-portion Achilles tendon ruptures: new sonographic findings helpful for diagnosis. British Journal of Sports Medicine 2011; 45: 429-432
  • 34 Kayser R, Mahlfeld K, Heyde CE. Partial rupture of the proximal Achilles tendon: a differential diagnostic problem in ultrasound imaging. British Journal of Sports Medicine 2005; 39: 838-842
  • 35 Astrom M, Gentz CF, Nilsson P et al. Imaging in chronic achilles tendinopathy: a comparison of ultrasonography, magnetic resonance imaging and surgical findings in 27 histologically verified cases. Skeletal Radiol 1996; 25: 615-620
  • 36 Movin T, Kristoffersen-Wiberg M et al. MR imaging in chronic achilles tendon disorder. Acta Radiologica 1998; 39: 126-132
  • 37 Ulreich N, Huber W, Nehrer S et al. High resolution magnetic resonance tomography and ultrasound imaging of the Achilles tendon. Wien Med Wochenschr Suppl 2002; 113: 39-40
  • 38 Maffulli N, Ajis A. Management of Chronic Ruptures of the Achilles Tendon. The Journal of Bone & Joint Surgery 2008; 90: 1348-1360
  • 39 Harcke H, Grissom L, Finkelstein M. Evaluation of the musculoskeletal system with sonography. American Journal of Roentgenology 1988; 150: 1253-1261
  • 40 Irwin T. Current concepts review: insertional achilles tendinopathy. Foot Ankle Int 2010; 31: 933-939
  • 41 Karjalainen PT, Soila K, Aronen HJ et al. MR Imaging of Overuse Injuries of the Achilles Tendon. American Journal of Roentgenology 2000; 175: 251-260
  • 42 Nicholson C, Berlet G, Lee T. Prediction of the success of nonoperative treatment of insertional Achilles tendinosis based on MRI. Foot Ankle Int 2007; 28: 472-477
  • 43 Shalabi A. Magnetic resonance imaging in chronic achilles tendinopathy. Acta Radiologica 2004; 45: 1-45
  • 44 Peduto AJ, Read JW. Imaging of Ankle Tendinopathy and Tears. Topics in Magnetic Resonance Imaging 2010; 21: 25-36
  • 45 van Dijk C, van Sterkenburg M, Wiegerinck J et al. Terminology for Achilles tendon related disorders. Knee Surg Sports Traumatol Arthrosc 2011; 19: 835-841
  • 46 Bottger BA, Schweitzer ME, El-Noueam KI et al. MR imaging of the normal and abnormal retrocalcaneal bursae. American Journal of Roentgenology 1998; 170: 1239-1241
  • 47 Kang S, Thordarson D, Charlton T. Insertional Achilles tendinitis and Haglund’s deformity. Foot Ankle Int 2012; 33: 487-491
  • 48 Weinstabl R, Stiskal M, Neuhold A et al. Classifying calcaneal tendon injury according to MRI findings. Journal of Bone & Joint Surgery, British Volume 1991; 73: 683-685
  • 49 Pomeranz SJ. Foot and ankle. In: Pomeranz SJ, (ed) Gamuts and pearls in MRI and orthopedics. Cincinnati, OH: MRI-EFI Publ. Inc; 1997: 250-254
  • 50 Shalabi A, Movin T, Kristoffersen-Wiberg M et al. Reliability in the assessment of tendon volume and intratendinous signal of the Achilles tendon on MRI: a methodological description. Knee Surg Sports Traumatol Arthrosc 2005; 13: 492-498
  • 51 Syha R, Würslin C, Ketelsen D et al. Automated volumetric assessment of the Achilles tendon (AVAT) using a 3D T2 weighted SPACE sequence at 3T in healthy and pathologic cases. European Journal of Radiology 2012; 81: 1612-1617
  • 52 Khan KM, Forster BB, Robinson J et al. Are ultrasound and magnetic resonance imaging of value in assessment of Achilles tendon disorders? A two year prospective study. Br J Sports Med 2003; 37: 149-153
  • 53 Gardin A, Bruno J, Movin T et al. Magnetic resonance signal, rather than tendon volume, correlates to pain and functional impairment in chronic Achilles tendinopathy. Acta Radiol 2006; 47: 718-724
  • 54 Shalabi A, Kristoffersen-Wiberg M, Papadogiannakis N et al. Dynamic contrast-enhanced MR imaging and histopathology in chronic achilles tendinosis: A longitudinal MR study of 15 patients. Acta Radiologica 2002; 43: 198-206
  • 55 Brushoj C, Henriksen BM, Albrecht-Beste E et al. Reproducibility of ultrasound and magnetic resonance imaging measurements of tendon size. Acta Radiol 2006 47: 954-959
  • 56 Bashford GR, Tomsen N, Arya S et al. Tendinopathy discrimination by use of spatial frequency parameters in ultrasound B-mode images. IEEE Trans Med Imaging 2008; 27: 608-615
  • 57 van Schie HTM, de Vos RJ, de Jonge S et al. Ultrasonographic tissue characterisation of human Achilles tendons: quantification of tendon structure through a novel non-invasive approach. British Journal of Sports Medicine 2010; 44: 1153-1159
  • 58 De Zordo T, Fink C, Feuchtner GM et al. Real-Time Sonoelastography Findings in Healthy Achilles Tendons. American Journal of Roentgenology 2009; 193: 134-138
  • 59 Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clinical Radiology 2009; 64: 1196-1202
  • 60 De Zordo T, Chhem R, Smekal V et al. Real-Time Sonoelastography: Findings in Patients with Symptomatic Achilles Tendons and Comparison to Healthy Volunteers. Ultraschall in Med 2010; 31: 394-400
  • 61 Sconfienza L, Silvestri E, Cimmino M. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol 2010; 28: 373-378
  • 62 Shin D, Finni T, Ahn S et al. In vivo estimation and repeatability of force-length relationship and stiffness of the human achilles tendon using phase contrast MRI. J Magn Reson Imaging 2008; 28: 1039-1045
  • 63 Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 2006; 19: 765-780
  • 64 Hayes CW, Parellada JA. The magic angle effect in musculoskeletal MR imaging. Top Magn Reson Imaging 1996; 8: 51-56
  • 65 Oatridge A, Herlihy A, Thomas RW et al. Magic Angle Imaging of the Achilles Tendon in Patients with Chronic Tendonopathy. Clinical Radiology 2003; 58: 384-388
  • 66 Oatridge A, Herlihy AH, Thomas RW et al. Magnetic resonance: magic angle imaging of the Achilles tendon. Lancet 2001; 358: 1610-1611
  • 67 Marshall H, Howarth C, Larkman DJ et al. Contrast-enhanced magic-angle MR imaging of the Achilles tendon. Am J Roentgenol 2002; 179: 187-192
  • 68 Robson MD, Gatehouse PD, Bydder M et al. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003; 27: 825-846
  • 69 Hodgson R, Grainger A, O’Connor P et al. Imaging of the Achilles tendon in spondyloarthritis: a comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast. European Radiology 2011; 21: 1144-1152
  • 70 Diaz E, Chung CB, Bae WC et al. Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water. NMR in Biomedicine 2012; 25: 161-168
  • 71 Du J, Statum S, Znamirowski R et al. Ultrashort TE T1ρ magic angle imaging. Magnetic Resonance in Medicine 2012; 69: 682-687
  • 72 Grosse U, Syha R, Martirosian P et al. Ultrashort echo time MR imaging with off-resonance saturation for characterization of pathologically altered Achilles tendons at 3 T. Magnetic Resonance in Medicine 2012; Epub ahead of print
  • 73 Juras V, Zbyn S, Pressl C et al. Regional variations of T2* in healthy and pathologic achilles tendon in vivo at 7 Tesla: Preliminary results. Magnetic Resonance in Medicine 2011; Epub ahead of print
  • 74 Syha R, Martirosian P, Ketelsen D et al. Magnetization Transfer in Human Achilles Tendon Assessed by a 3D Ultrashort Echo Time Sequence: Quantitative Examinations in Healthy Volunteers at 3T. Fortschr Röntgenstr 2011; 183: 1043-1050
  • 75 Wright P, Jellus V, McGonagle D et al. Comparison of two ultrashort echo time sequences for the quantification of T1 within phantom and human Achilles tendon at 3 T. Magnetic Resonance in Medicine 2012; 68: 1279-1284
  • 76 Wang K, Yu H, Brittain JH et al. k-space water-fat decomposition with T2* estimation and multifrequency fat spectrum modeling for ultrashort echo time imaging. Journal of Magnetic Resonance Imaging 2010; 31: 1027-1034
  • 77 Du J, Carl M, Diaz E et al. Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles tendon and meniscus. Magnetic Resonance in Medicine 2010; 64: 834-842
  • 78 Juras V, Welsch G, Bär P et al. Comparison of 3T and 7T MRI clinical sequences for ankle imaging. European Journal of Radiology 2012; 81: 1846-1850
  • 79 Juras V, Apprich S, Pressl C et al. Histological correlation of 7T multi-parametric MRI performed in ex-vivo Achilles tendon. European Journal of Radiology 2011; Epub ahead of print
  • 80 Juras V, Zbýň Š, Pressl C et al. Sodium MR Imaging of Achilles Tendinopathy at 7 T: Preliminary Results. Radiology 2012; 262: 199-205