Ultraschall Med 2013; 34(3): 272-279
DOI: 10.1055/s-0033-1335133
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative Assessment of Bone Microvascularization After Osteocutaneous Flap Transplantation Using Contrast-Enhanced Ultrasound (CEUS)

Quantitative Auswertung der Knochenperfusion nach osteokutaner Lappentransplantation mittels Kontrastmittelultraschall (CEUS)
S. Geis
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital and Caritas Hospital St. Josef Regensburg
,
L. Prantl
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital and Caritas Hospital St. Josef Regensburg
,
S. Mueller
2   Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg
,
M. Gosau
2   Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg
,
P. Lamby
1   Center of Plastic-, Hand- and Reconstructive Surgery, University Hospital and Caritas Hospital St. Josef Regensburg
,
E. M. Jung
3   Department of Radiology, University Hospital Regensburg
› Author Affiliations
Further Information

Publication History

16 June 2012

22 January 2013

Publication Date:
24 May 2013 (online)

Abstract

Background: Extensive wound defects frequently have to be covered by free flap transplantation. A monitoring device for measuring capillary level perfusion of bone is currently not available.

Objective: The aim of the study was to detect complications after osteocutaneous flap transplantation using contrast-enhanced ultrasound (CEUS). Additionally quantitative analysis was performed by special perfusion software (QONTRAST®; Bracco, Italy).

Methods: 22 patients were examined after osteocutaneous flap transplantation during the first 72 h after operation. CEUS was performed with a linear transducer (6 – 9 MHz, LOGIQ E9/GE) after bolus injections of 2.4 ml ultrasound contrast agent (SonoVue®; Bracco, Italy). The osseous perfusion and soft tissue perfusion were analyzed separately and quantitative perfusion analysis was performed. Five patients had to undergo reoperation due to compromised flap microvascularization.

Results: In all 5 complications reduced osseous and soft tissue perfusion was seen using CEUS. Additionally using the perfusion parameters TTP (time to PEAK), RBV (regional blood volume), RBF (regional blood flow) und MTT (mean transit time), significantly lower soft tissue and osseous perfusion was detected.

Conclusion: CEUS seems to be capable of detecting vascular disturbances and of assessing microvascularization of the osseous component after osteocutaneous flap transplantation.

Zusammenfassung

Ziel: In vielen Situationen ist die freie Lappenplastik die einzige Option zur Deckung großer Weichteildefekte. Die Komplikationsrate nach freier Lappentransplantation beläuft sich auf 5 – 10 %. Aktuell existieren keinerlei Systeme zur Beurteilung der Knochenperfusion oder zur Beurteilung tiefer gelegener Gewebeschichten.

Fragestellung: Ziel dieser Studie war die Erfassung von Komplikationen nach freier osteokutaner Lappentransplantation mit Hilfe von Kontrastmittelultraschall (CEUS) sowie die quantitative Auswertung der Knochenperfusion mit Hilfe einer speziellen Perfusionssoftware (QONTRAST®; Bracco, Italy).

Material und Methodik: 22 Patienten wurden in der Studie eingeschlossen. Die Kontrastmittelultraschalluntersuchung wurde nach einer Bolus-Injektion von 2,4 ml Kontrastmittel (SonoVue®; Bracco, Italy) mit einem linearen Schallkopf (6 – 9 MHz, LOGIQ E9/GE) innerhalb der ersten 72 postoperativen Stunden durchgeführt. Die Weichteilperfusion und die Knochenperfusion wurde anhand separater regions of interest mit Hilfe der Perfusionssoftware semi-quantitativ ausgewertet. In fünf Fällen musste aufgrund einer eingeschränkten Lappendurchblutung ein Revisionseingriff durchgeführt werden.

Ergebnisse: In allen fünf Komplikationen konnte sowohl eine reduzierte Kontrastmittelanflutung als auch ein verzögertes Auswaschen des Kontrastmittel beobachtet werden. Mit Hilfe der Perfusionsparameter TTP (time to PEAK), RBV (regionales Blutvolumen), RBF (regionaler Blutfluss) und MTT (mittlere Verweildauer des Kontrastmittels) konnte eine signifikant niedrigere Weichteilperfusion und Knochenperfusion detektiert werden.

Schlussfolgerung: Es konnte gezeigt werden, dass sich der Kontrastmittel Ultraschall zur Erfassung kritischer Durchblutungsstörungen nach freier osteokutaner Lappentransplantation durchaus eignet.

 
  • References

  • 1 Kroll SS, Schusterman MA, Reece GP et al. Choice of flap and incidence of free flap success. Plast Reconstr Surg 1996 ; 98: 459-463
  • 2 Schusterman MA, Miller MJ, Reece GP et al. A single center's experience with 308 free flaps for repair of head and neck cancer defects. Plast Reconstr Surg [Research Support, Non-U.S. Gov't] 1994; 93: 472-478 discussion 9-80.
  • 3 Kind GM, Buntic RF, Buncke GM et al. The effect of an implantable Doppler probe on the salvage of microvascular tissue transplants. Plast Reconstr Surg. [Case Reports] 1998; 101: 1268-1273 ; discussion 74-75
  • 4 Kamolz LP, Giovanoli P, Haslik W et al. Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience. J Reconstr Microsurg 2002; 18: 487-491 discussion 92-93
  • 5 Disa JJ, Cordeiro PG, Hidalgo DA. Efficacy of conventional monitoring techniques in free tissue transfer: an 11-year experience in 750 consecutive cases. Plast Reconstr Surg 104 1999; 97-101
  • 6 Prantl L, Pfister K, Kubale R et al. Value of high resolution ultrasound and contrast enhanced US pulse inversion imaging for the evaluation of the vascular integrity of free-flap grafts. Clin Hemorheol Microcirc 2007; 36: 203-216
  • 7 Brown J, Graham D, Chapman T. Factors influencing teaching and learning in the preregistration year. Hosp Med. [Research Support, Non-U.S. Gov't]. 2003; 64: 740-742
  • 8 Khouri RK, Cooley BC, Kunselman AR et al. A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg. [Multicenter Study] 1998 ; 102: 711-721
  • 9 Spiegel JH, Polat JK. Microvascular flap reconstruction by otolaryngologists: prevalence, postoperative care, and monitoring techniques. Laryngoscope [Review] 2007 ; 117: 485-490
  • 10 Giunta RE, Holzbach T, Taskov C et al. Prediction of flap necrosis with laser induced indocyanine green fluorescence in a rat model. Br J Plast Surg 2005 ; 58: 695-701
  • 11 Christiansen JP, Leong-Poi H, Amiss LR et al. Skin perfusion assessed by contrast ultrasound predicts tissue survival in a free flap model. Ultrasound Med Biol [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. 2002; 28: 315-320
  • 12 Muellner T, Nikolic A, Schramm W et al. New instrument that uses near-infrared spectroscopy for the monitoring of human muscle oxygenation. J Trauma. 1999; 46: 1082-1084
  • 13 Girlich C, Jung EM, Huber E et al. Comparison between preoperative quantitative assessment of bowel wall vascularization by contrast-enhanced ultrasound and operative macroscopic findings and results of histopathological scoring in Crohn's disease. Ultraschall in Med [Comparative Study] 2011 ; 32: 154-159
  • 14 Girlich C, Jung EM, Iesalnieks I et al. Quantitative assessment of bowel wall vascularisation in Crohn's disease with contrast-enhanced ultrasound and perfusion analysis. Clin Hemorheol Microcirc 2009; 43: 141-148
  • 15 Girlich C, Schacherer D, Jung EM et al. Comparison between quantitative assessment of bowel wall vascularization by contrast-enhanced ultrasound and results of histopathological scoring in ulcerative colitis. Int J Colorectal Dis 2012; 27 (02) 193-198
  • 16 Girlich C, Schacherer D, Lamby P et al. Innovations in contrast enhanced high resolution ultrasound improve sonographic imaging of the intestine. Clin Hemorheol Microcirc 2010; 45: 207-215
  • 17 Jung EM, Prantl L, Schreyer AG et al. New perfusion imaging of tissue transplants with Contrast Harmonic Ultrasound Imaging (CHI) and Magnetic Resonance Imaging (MRI) in comparison with laser-induced Indocyanine Green (ICG) fluorescence angiography. Clin Hemorheol Microcirc 2009; 43: 19-33
  • 18 Jung EM, Rennert J, Fellner C et al. Detection and characterization of endoleaks following endovascular treatment of abdominal aortic aneurysms using contrast harmonic imaging (CHI) with quantitative perfusion analysis (TIC) compared to CT angiography (CTA). Ultraschall in Med. [Comparative Study] 31: 564-570
  • 19 Clevert DA, Horng A, Jung EM et al. Contrast-enhanced ultrasound versus conventional ultrasound and MS-CT in the diagnosis of abdominal aortic dissection. Clin Hemorheol Microcirc 2009; 43: 129-139
  • 20 Clevert DA, Minaifar N, Kopp R et al. Imaging of endoleaks after endovascular aneurysm repair (EVAR) with contrast-enhanced ultrasound (CEUS). A pictorial comparison with CTA. Clin Hemorheol Microcirc [Comparative Study Review] 2009; 41: 151-168
  • 21 Clevert DA, Schick K, Chen MH et al. Role of contrast enhanced ultrasound in detection of abdominal aortic abnormalities in comparison with multislice computed tomography. Chin Med J (Engl) [Comparative Study] 2009; 122: 858-864
  • 22 Clevert DA, Stickel M, Minaifar N et al. Contrast-enhanced ultrasound in liver transplant: first results and potential for complications in the postoperative period. Clin Hemorheol Microcirc [Clinical Trial] 2009; 43: 83-94
  • 23 Sidhu PS, Choi BI, Nielsen MB. The EFSUMB Guidelines on the Non-hepatic Clinical Applications of Contrast Enhanced Ultrasound (CEUS): a new dawn for the escalating use of this ubiquitous technique. Ultraschall in Med [Comment Editorial]. 2012; 33: 5-7
  • 24 Dietrich CF, Averkiou MA, Correas JM et al. An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall in Med 2012; 33: 344-351
  • 25 Fellner C, Prantl L, Rennert J et al. Comparison of time–intensity–curve – (TIC –) analysis of contrast-enhanced ultrasound (CEUS) and dynamic contrast–enhanced (DCE) MRI for postoperative control of microcirculation in free flaps – First results and critical comments. Clin Hemorheol Microcirc. 2011; 48: 187-198
  • 26 Gehmert S, Geis S, Lamby P et al. Evaluation of hyperbaric oxygen therapy for free flaps using planar optical oxygen sensors. Preliminary results. Clin Hemorheol Microcirc 2011; 48: 75-79
  • 27 Geis S, Gehmert S, Lamby P et al. Contrast enhanced ultrasound (CEUS) and time intensity curve (TIC) analysis in compartment syndrome: first results. Clin Hemorheol Microcirc 2012; 50: 1-11
  • 28 Geis S, Prantl L, Gehmert S et al. TTP (time to PEAK) and RBV (regional blood volume) as valuable parameters to detect early flap failure. Clin Hemorheol Microcirc 2011; 48: 81-94
  • 29 Lamby P, Prantl L, Fellner C et al. Post-operative monitoring of tissue transfers: Advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?. Clin Hemorheol Microcirc 2011 ; 48: 105-117
  • 30 Suh JD, Sercarz JA, Abemayor E et al. Analysis of outcome and complications in 400 cases of microvascular head and neck reconstruction. Arch Otolaryngol Head Neck Surg [Comparative Study] 2004; 130: 962-966
  • 31 Khalid AN, Quraishi SA, Zang WA et al. Color doppler ultrasonography is a reliable predictor of free tissue transfer outcomes in head and neck reconstruction. Otolaryngol Head Neck Surg. [Comparative Study] 2006 ; 134: 635-638
  • 32 Prantl L, Schmitt S, Gais S et al. Contrast harmonic ultrasound and indocyanine-green fluorescence video angiography for evaluation of dermal and subdermal microcirculation in free parascapular flaps. Clin Hemorheol Microcirc [Clinical Trial Comparative Study] 2008; 38: 31-44
  • 33 Jung EM, Ross CJ, Rennert J et al. Characterization of microvascularization of liver tumor lesions with high resolution linear ultrasound and contrast enhanced ultrasound (CEUS) during surgery: First results. Clin Hemorheol Microcirc 2010; 46: 89-99
  • 34 Gudmundsson P, Shahgaldi K, Winter R et al. Parametric quantification of myocardial ischaemia using real-time perfusion adenosine stress echocardiography images, with SPECT as reference method. Clin Physiol Funct Imaging [Clinical Trial Comparative Study Research Support, Non-U.S. Gov't Validation Studies] 2010; 30: 30-42
  • 35 Lamby P, Prantl L, Schreml S et al. Improvements in high resolution ultrasound for postoperative investigation of capillary microperfusion after free tissue transfer. Clin Hemorheol Microcirc 2009; 43: 35-49
  • 36 Prantl L, Schmitt S, Geis S et al. Contrast harmonic ultrasound and indocyanine-green fluorescence video angiography for evaluation of dermal and subdermal microcirculation in free parascapular flaps. Clin Hemorheol Microcirc 2008; 38: 105-118
  • 37 Stock K, Hann von Weyhern C, Slotta-Huspenina J et al. Microcirculation of subepithelial gastric tumors using contrast-enhanced ultrasound. Clin Hemorheol Microcirc 2010; 45: 225-232
  • 38 Greis C. [Summary of technical principles of contrast sonography and future perspectives]. Radiologe 2011; 51: 456-461
  • 39 Grodstein F, Stampfer M. The epidemiology of coronary heart disease and estrogen replacement in postmenopausal women. Prog Cardiovasc Dis [Research Support, U.S. Gov't, P.H.S. Review]. 1995; 38: 199-210
  • 40 Sullivan JM, Vander ZwaagR, Hughes JP et al. Estrogen replacement and coronary artery disease. Effect on survival in postmenopausal women. Arch Intern Med 1990; 150: 2557-2562
  • 41 Stampfer MJ, Colditz GA, Willett WC et al. Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses' health study. N Engl J Med [Research Support, U.S. Gov't, P.H.S.]. 1991; 325: 756-762
  • 42 Caine GJ, Stonelake PS, Lip GY et al. The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia [Research Support, Non-U.S. Gov't Review]. 2002; 4: 465-473