Der Nuklearmediziner 2012; 35(04): 222-226
DOI: 10.1055/s-0032-1327718
Strahlenexposition bei Hybridbildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Strahlenhygienische Aspekte der neuronuklearmedizi­nischen Untersuchungen an Hybridgeräten

The Radiation Hygiene Aspects of Radioisotopic Neuroimaging Using Hybrid Scanner
M. Plotkin
1   Vivantes Institut für Nuklearmedizin Mitte/Nord, Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Dezember 2012 (online)

Zusammetnfassung

In den letzten 10 Jahren wurde das Spektrum der neuronuklearmedizinischen Bildgebung wesentlich erweitert. Neben bewährten Radiopharmaka (wie z. B. 99mTc-HMPAO, 18F-FDG) wurden neue, spezifische Tracer entwickelt, welche eine gezielte Markierung zerebraler Stoffwechselvorgänge erlauben und insbesondere in der Diagnostik neurodegenerativer Erkrankungen deutliche Vorteile bieten. Die zunehmende Verbreitung der – überwiegend für die onkologische Bildgebung konzipierten – Bildgebungssystemen mit integrierter CT stellt Nuklearmediziner vor der Frage, inwieweit die zusätzliche Strahlenexposition durch die CT-Komponente bei Hirnuntersuchungen gerechtfertigt ist. Die Besonderheiten der Schichtbildgebung an SPECT/CT- und PET/CT-Scanner machen eine Anpassung der nuklearmedizinischen Untersuchungsprotokolle erforderlich. Die Entwicklung der Hybridscanner mit MRT-Komponente bietet neue Perspektiven für die Hirnbildgebung und erscheint auch von dem strahlenhygienischen Aspekt eine attraktive Alternative zu sein.

Abstract

In the past 10 years, the spectrum of neuro-nuclear medicine imaging has been greatly expanded. In addition to the well-established radiopharmaceuticals (99mTc-HMPAO, 18F-FDG) new specific tracers have been developed which allow a specific targeting of cerebral metabolism and have distinct advantages in the diagnosis of neurodegenerative diseases. The introduction of the hybrid scanners with integrated CT, which are mainly dedicated for oncological imaging, confronts the nuclear medicine physicians with the question of who justified is the additional radiation exposure by the CT component is in the case of brain imaging. The particularities of the SPECT/CT and PET/CT scanner make nesassary an adaptation of the nuclear medicine examination protocols. The development of hybrid scanners with integrated MRI provides new perspectives for brain imaging, and appears also to be an attractive alternative from the radiation-hygienic aspect.

 
  • Literatur

  • 1 Abou Khalil BW, Siegel BW, Sackellares GJ et al. Positron emission tomography studies of cerebral glucose metabolism in chronic partial epilepsy. Ann Neurol 1987; 22: 480-486
  • 2 Bach-Gansmo T, Schwarzlmüller T, Jøraholmen V et al. SPECT/CT hybrid imaging; with which CT?. Media Mol Imaging 2010; 5: 208-212
  • 3 Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Transactions on Nuclear Science 1977; 25: 638-643
  • 4 Cohen RA, Paul RH, Zawacki TM et al. Single photon emission computed tomography, magnetic resonance imaging hyperintensity, and cognitive impairments in patients with vascular dementia. J Neuro­imaging 2001; 11: 253-260
  • 5 Farid K, Habert MO, Martineau A et al. Impact of CT attenuation correction by SPECT/CT in brain perfusion images. Ann Nucl Med 2012; 26: 241-247
  • 6 Foltynie T, Barker R, Brayne C. Vascular parkinsonism: a review of the precision and frequency of the diagnosis. Neuroepidemiology 2002; 21: 1-7
  • 7 Goffin K, Van Paesschen W, Dupont P et al. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging 2010; 37: 1148-1155
  • 8 Hara N, Onoguchi M, Takenaka K et al. Assessment of patient exposure to X-radiation from SPECT/CT scanners. J Nucl Med Technol 2010; 38: 138-148
  • 9 Hellwig D, Grgic A, Kotzerke J et al. Nuclear Medicine in Germany. Key data from official statistics. Nuklearmedizin 2011; 50: 53-67
  • 10 Hofmann M, Steinke F, Scheel V et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008; 49: 1875-1883
  • 11 Ishii K, Hanaoka K, Okada M et al. Impact of CT attenuation correction by SPECT/CT in brain perfusion images. Ann Nucl Med 2012; 26: 241-247
  • 12 Kanetaka H, Matsuda H, Asada T et al. Effects of partial volume correction on discrimination between very early Alzheimer’s dementia and controls using brain perfusion SPECT. Eur J Nucl Med Mol Imaging 2004; 31: 975-980
  • 13 Kivi A, Trottenberg T, Kupsch A et al. Levodopa-responsive posttraumatic parkinsonism is not associated with changes of echogenicity of the substantia nigra. Mov Disord 2005; 20: 258-260
  • 14 Mattsson S, Söderberg M. Radiation dose management in CT, SPECT/CT and PET/CT techniques. Radiat Prot Dosimetry 2011; 147: 13-21
  • 15 Murrow RW, Schweiger GD, Kepes JJ et al. Parkinsonism due to a basal ganglia lacunar state: clinicopathologic correlation. Neurology 1990; 40: 897-900
  • 16 O’Brien TJ, So EL, Mullan BP et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50: 445-454
  • 17 Pietrzyk U, Herholz K, Fink G et al. An interactive technique for three-dimentional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994; 35: 2011-2018
  • 18 Plotkin M, Amthauer H, Quill S et al. Imaging of dopamine transporters and D2 receptors in vascular parkinsonism: a report of four cases. J Neural Transm 2005; 112: 1355-1361
  • 19 Salamon N, Kung J, Shaw SJ et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 2008; 71: 1594-1601
  • 20 Sarrafzadeh A, Nagel A, Czabanka M et al. Imaging of hypoxic-ischemic penumbra with 18F-fluoromisonidazole PET/CT and measurement of related cerebral metabolism in aneurysmal subarachnoid hemorrhage. J Cereb Blood F Metab 2010; 30: 36-45
  • 21 Sharma P, Sharma S, Ballal S et al. SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone. Nucl Med Commun 2012; 33: 926-932
  • 22 Smith AB, Dillon WP, Gould R et al. Radiation dose-reduction strategies for neuroradiology CT protocols. AJNR Am J Neuroradiol 2007; 28: 1628-1632
  • 23 Son YD, Kim HK, Kim ST et al. Analysis of biased PET images caused by inaccurate attenuation coefficients. J Nucl Med 2010; 51: 753-760
  • 24 Stefan H, Pawlik G, Bocher-Schwarz HG et al. Functional and morphological abnormalities in temporal lobe epilepsy: a comparison of interictal and ictal EEG, CT, MRI, SPECT and PET. J Neurol 1987; 234: 377-384
  • 25 Van Laere K, Koole M, Versijpt J et al. Non-uniform versus uniform attenuation correction in brain perfusion SPET of healthy volunteers. European Journal of Nuclear Medicine 2001; 28: 90-98
  • 26 von Oertzen TJ, Mormann F, Urbach H et al. Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia 2011; 52: 2239-2248
  • 27 Warwick JM, Rubow S, du Toit M et al. The Role of CT-Based Attenuation Correction and Collimator Blurring Correction in Striatal Spect Quantification. Int J Mol Imaging 2011; 195037
  • 28 Wieder H, Freudenberg LS, Czernin J et al. Variations of clinical SPECT/CT operations. An international survey. Nuklearmedizin 2012; 51: 154-160
  • 29 Wu TH, Huang YH, Lee JJ et al. Radiation exposure during transmis­sion measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 2004; 31: 38-43
  • 30 Yanase D, Matsunari I, Yajima K et al. PET study of normal aging in Japanese: effect of atrophy correction. Eur J Nucl Med Mol Imaging 2005; 32: 794-805