Pneumologie 2013; 67(04): 205-208
DOI: 10.1055/s-0032-1326365
Serie: Neue Wege in der Thorax-Onkologie
© Georg Thieme Verlag KG Stuttgart · New York

Crizotinib – Molekulare Therapie des Lungenkarzinoms

Crizotinib − Molecular Therapy for Lung Cancer
A. Gröschel
1   Ambulantes Aachener Zentrum für Lungenheilkunde, Luisenhospital, Aachen
,
A. Warth
2   Institut für Pathologie, Universitätsklinikum Heidelberg
,
N. Reinmuth
3   Lungenclinic Grosshansdorf
› Author Affiliations

Subject Editor: C. Grohé, Berlin; N. Reinmuth, Grosshansdorf
Further Information

Publication History

Publication Date:
10 April 2013 (online)

Zusammenfassung

Die anaplastische Lymphomkinase (ALK) kann durch eine Gen-Translokation überaktiviert werden und dadurch ein Schlüsselonkogen bei der Progression von Tumorzellen werden. Bei ungefähr 5 % aller Patienten mit fortgeschrittenem nicht-kleinzelligem Lungenkarzinom (NSCLC) lässt sich mittels FISH (Fluoreszenz-in-situ-Hybridisierung) ein Fusionsgen, bestehend aus EML4 (echinoderm microtubule-associated protein-like 4) und ALK, nachweisen, welches zu einer Überaktivierung von ALK führt. Weitere Labortechniken können eine veränderte ALK-Expression nachweisen, wobei die Vergleichbarkeit mit FISH-Ergebnissen unterschiedlich ist. Crizotinib ist eine kleinmolekulare Substanz, die die ALK-Tyrosinkinaseaktivität hemmt. Die Behandlung mit Crizotinib von vorbehandelten NSCLC-Patienten, bei denen EML4-ALK-Fusionsgene nachgewiesen wurden, zeigte in klinischen Studien ein verbessertes Ansprechen und verlängertes progressionsfreies Überleben (PFS) im Vergleich zur Standard-Chemotherapie. Im Folgenden sollen Nachweismethoden und klinische Daten dargestellt werden.

Abstract

The anaplastic lymphoma kinase (ALK) can act as a key oncogenic driver after activation by means of processes such as gene rearrangement. In approximately 5 % of patients with advanced non-small cell lung cancer (NSCLC), an oncogenic fusion gene of echinoderm microtubule-associated protein-like 4 (EML4) and ALK has been detected using fluorescence in situ hybridisation (FISH). Moreover, various methods including immunohistochemistry and PCR-based assays can be used for analysing ALK expression. Clinical data have been generated for crizotinib, a small molecule inhibitor of the ALK receptor tyrosine kinase, demonstrating a substantial improvement of objective response rate and prolonged progression-free survival (PFS) compared to standard chemotherapy in pretreated NSCLC patients harbouring EML4-ALK fusion genes. In the current review, recent data on the detection and inhibition of ALK in advanced NSCLC are summarised.

 
  • Literatur

  • 1 Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448: 561-566
  • 2 Perner S, Wagner PL, Demichelis F et al. EML4-ALK fusion lung cancer: a rare acquired event. Neoplasia 2008; 10: 298-302
  • 3 Inamura K, Takeuchi K, Togashi Y et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 2008; 3: 13-17
  • 4 Shaw AT, Yeap BY, Mino-Kenudson M et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009; 27: 4247-4253
  • 5 Sasaki T, Rodig SJ, Chirieac LR et al. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 2010; 46: 1773-1780
  • 6 Boland JM, Erdogan S, Vasmatzis G et al. Anaplastic lymphoma kinase immunoreactivity correlates with ALK gene rearrangement and transcriptional up-regulation in non-small cell lung carcinomas. Hum Pathol 2009; 40: 1152-1158
  • 7 Wong DW, Leung EL, So KK et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009; 115: 1723-1733
  • 8 Inamura K, Takeuchi K, Togashi Y et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol 2009; 22: 508-515
  • 9 Rodig SJ, Mino-Kenudson M, Dacic S et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 2009; 15: 5216-5223
  • 10 Jokoji R, Yamasaki T, Minami S et al. Combination of morphological feature analysis and immunohistochemistry is useful for screening of EML4-ALK-positive lung adenocarcinoma. J Clin Pathol 2010; 63: 1066-1070
  • 11 Koivunen JP, Mermel C, Zejnullahu K et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 2008; 14: 4275-4283
  • 12 Sanders HR, Li HR, Bruey JM et al. Exon scanning by reverse transcriptase-polymerase chain reaction for detection of known and novel EML4-ALK fusion variants in non-small cell lung cancer. Cancer Genet 2011; 204: 45-52
  • 13 Penzel R, Schirmacher P, Warth A. A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK. J Thorac Oncol 2012; 7: 1198-1199
  • 14 Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131: 1190-1203
  • 15 Takeuchi K, Choi YL, Togashi Y et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009; 15: 3143-3149
  • 16 Wong DW, Leung EL, Wong SK et al. A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer 2011; 117: 2709-2718
  • 17 Salido M, Pijuan L, Martinez-Aviles L et al. Increased ALK gene copy number and amplification are frequent in non-small cell lung cancer. J Thorac Oncol 2011; 6: 21-27
  • 18 Doebele RC, Aisner DL, Le AT et al. Analysis of resistance mechanisms to ALK kinase inhibitors in ALK+ NSCLC patients. J Clin Oncol 2012; 30: 7504
  • 19 Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363: 1693-1703
  • 20 Yi ES, Boland JM, Maleszewski JJ et al. Correlation of IHC and FISH for ALK gene rearrangement in non-small cell lung carcinoma: IHC score algorithm for FISH. J Thorac Oncol 2011; 6: 459-465
  • 21 Takeuchi K, Choi YL, Soda M et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res 2008; 14: 6618-6624
  • 22 Lin E, Li L, Guan Y et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009; 7: 1466-1476
  • 23 Mino-Kenudson M, Chirieac LR, Law K et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res 2010; 16: 1561-1571
  • 24 Scagliotti G, Stahel RA, Rosell R et al. ALK translocation and crizotinib in non-small cell lung cancer: An evolving paradigm in oncology drug development. Eur J Cancer 2012; 48: 961-973
  • 25 Camidge DR, Bang Y-J, Kwak EL et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012; 13: 1011-1019
  • 26 Zhang S, Wang F, Keats J et al. Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des 2011; 78: 999-1005
  • 27 Doebele RC, Pilling AB, Aisner D et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 2012; 18: 1472-1482
  • 28 Katayama R, Shaw AT, Khan TM et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 2012; 4: 120ra17
  • 29 Sasaki T, Koivunen J, Ogino A et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 2011; 71: 6051-6060