Subscribe to RSS
DOI: 10.1055/s-0032-1325074
Innovative Entwicklungen – resorbierbare Scaffolds
Innovative Interventional Technologies: Absorbable ScaffoldsPublication History
Publication Date:
06 August 2013 (online)
Zusammenfassung
Die Implantation von medikamentefreisetzenden Stents (DES) gilt heute als Standard in der koronarinterventionellen Therapie, wenn eine mindestens 6-monatige duale Antiplättchentherapie (DAPT) zum Schutz vor Stentthrombosen gewährleistet werden kann. Trotz ihrer großen Effizienz in der Reduktion von Restenosierungen und notwendigen Re-Interventionen haben DES Nachteile: den möglichen chronischen mechanischen und inflammatorischen Gefäßwandreiz, seltener die Entwicklung von späten und sehr späten Stentthrombosen und gelegentlich die Entwicklung einer akzelerierten Neoarteriosklerose im DES.
Absorbierbare polymer- oder magnesiumbasierte Scaffolds haben eine temporäre Stützwirkung von ca. 3 Monaten und werden dann abgebaut. Damit erlauben sie dem Gefäß ein expansives Remodeling ohne permanenten mechanischen Gefäßwandreiz. Die bisher getesteten absorbierbaren Scaffolds haben in Kombination mit einer antiproliferativ wirkenden Medikamentenfreisetzung ähnlich gute Effizienzdaten zur Restenoselimitierung gezeigt wie permanente DES; die Patientenzahlen sind diesbezüglich allerdings bislang überschaubar. Scaffold-Thrombosen scheinen jedoch mit Blick auf die bisher verfügbaren Daten eher seltener aufzutreten als DES-Thrombosen, bei einer mindestens 6-monatigen Dauer der DAPT. Nachteil der polymerbasierten absorbierbaren Scaffolds ist deren geringere Radialkraft und Stabilität, die bei absorbierbaren Magnesium-Scaffolds besser und vergleichbar zu permanenten DES ist. Für die klinische Anwendung mit CE-Zertifizierung außerhalb von Studien ist lediglich der Everolimus-eluierende „Bioresorbable Vascular Scaffold“ (BVS) zugelassen, der mittlerweile bei mehreren tausend Patienten implantiert wurde.
Zukünftige Untersuchungsergebnisse mit absorbierbaren Scaffolds müssen deren bisherige vielversprechende Effizienz- und Sicherheitsdatenlage auch bei komplexeren Läsionsszenarien oder Patientensubpopulationen mit einer verkürzten DAPT-Dauer aufzeigen.
Abstract
Drug eluting stents (DES) are todayʼs standard of care for the interventional treatment of a coronary stenosis, if dual antiplatelet therapy (DAPT) can be maintained for at least six months. Despite a significant reduction in restenosis and reintervention rates DES have substantial limitations: they are permanent implants exposing a chronic mechanical and inflammatory stress to the vessel wall, are associated to especially late and very late DES thrombosis and develop an accelerated neoatherosclerosis within the DES.
Absorbable polymer or magnesium based scaffolds allow a temporary support of the vessel for about three months after which they are absorbed with a loss of radial strength, stability and mass. Thereby, an expansive vessel remodeling could develop without a permanent mechanical stress. Current absorbable scaffold technology is combined with the elution of an antiproliferative drug and has shown restenosis and reintervention rates similar to permanent DES. Scaffold thrombosis is a rare event and reported at lower rates compared to DES with the same DAPT regimen. Polymer-based scaffolds have a limited radial strength and stability compared to magnesium-based scaffolds which are comparable to DES. The “Bioresorbable Vascular Scaffold” (BVS) is the only scaffold which is CE-marked as of today and has been implanted also outside of clinical trials in several thousand patients.
In future trials, the promising efficacy and safety results of bioabsorbable scaffolds have to be repeated in more complex lesion scenarios and patient subsets addressing also the potential for a shortened DAPT duration.
-
Literatur
- 1 Wijns W, Kohl P, Danchin N et al. Guidelines on myocardial revascularization. The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2010; 31: 2501-2555
- 2 Van Buren F. 25. Bericht über die Leistungszahlen der Herzkatheterlabore in der Bundesrepublik Deutschland. Kardiologe 2010; 4: 502-508
- 3 Sanchez-Recalde A, Moreno R, Barreales L et al. Risk of late-acquired incomplete stent apposition after drug-eluting stent versus bare-metal stent. A meta-analysis from 12 randomized trials. J Invasive Cardiol 2008; 20: 417-422
- 4 Gomez-Lara J, Radu M, Brugaletta S et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv 2011; 4: 992-1001
- 5 Cook S, Eshtehardi P, Kalesan B et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J 2012; 33: 1334-1343
- 6 Tamai H, Igaki K, Kyo E et al. Initial and 6-month results of biodegradable poly-L-lactic acid coronary stents in humans. Circulation 2000; 102: 399-404
- 7 Ormiston JA, Serruys PW, Regar E et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 2008; 371: 899-907
- 8 Serruys PW, Ormiston JA, Onuma Y et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 2009; 373: 897-910
- 9 Serruys PW, Onuma Y, Ormiston JA et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 2010; 122: 2301-2312
- 10 Serruys PW, Onuma Y, Dudek D et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol 2011; 58: 1578-1588
- 11 Farooq V, Gomez-Lara J, Brugaletta S et al. Proximal and distal maximal luminal diameters as a guide to appropriate deployment of the ABSORB everolimus-eluting bioresorbable vascular scaffold: A substudy of the ABSORB cohort B and the ongoing ABSORB EXTEND single arm study. Catheter Cardiovasc Interv 2012; 79: 880-888
- 12 Heublein B, Rohde R, Kaese V et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?. Heart 2003; 89: 651-656
- 13 Waksman R. Promises and challenges of bioabsorbable stents. Catheter Cardiovasc Interv 2007; 70: 407-414
- 14 Waksman R, Pakala R, Kuchulakanti PK et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 2006; 68: 607-617
- 15 Erbel R, Di Mario C, Bartunek J et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 2007; 369: 1869-1875
- 16 Waksman R, Erbel R, Di Mario C et al. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc Interv 2009; 2: 312-320
- 17 Wittchow E, Adden N, Riedmueller J et al. Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model. EuroIntervention 2013; 8: 1441-1450
- 18 Haude M, Erbel R, Erne P et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 2013; 381: 836-844
- 19 Lind AY, Eggebrecht H, Erbel R. Images in cardiology: the invisible stent: imaging of an absorbable metal stent with multislice spiral computed tomography. Heart 2005; 91: 1604
- 20 Eggebrecht H, Rodermann J, Hunold P et al. Images in cardiovascular medicine. Novel magnetic resonance-compatible coronary stent: the absorbable magnesium-alloy stent. Circulation 2005; 112: 303-304