Transfusionsmedizin 2013; 3(3): 127-139
DOI: 10.1055/s-0032-1325071
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Mobilisierung hämatopoietischer Stammzellen

Mobilization of Hematopoietic Stem/Progenitor Cells
D. Karpova
1   DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut Frankfurt, und Institut für Transfusionsmedizin , und Immunhämatologie, Goethe Universität, Frankfurt
,
E. Wiercinska
1   DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut Frankfurt, und Institut für Transfusionsmedizin , und Immunhämatologie, Goethe Universität, Frankfurt
,
H. Bönig
1   DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut Frankfurt, und Institut für Transfusionsmedizin , und Immunhämatologie, Goethe Universität, Frankfurt
2   University of Washington, Seattle, WA, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. August 2013 (online)

Zusammenfassung

Als Stammzellmobilisierung wird der pharmakologisch induzierte Egress hämatopoietischer Stammzellen aus dem Knochenmark in das Peripherblut bezeichnet. Die klinische Bedeutung der Stammzellmobilisierung liegt darin, dass mobilisierte Stammzellen mittels Leukapherese aus dem Blut extrahiert und als Transplantat für entsprechend konditionierte Patienten verwendet werden können. Heute werden fast alle autologen und ca. 80 % der allogenen Transplantationen mit „mobilisierten Stammzellen“ durchgeführt. Obwohl eine Vielzahl Stammzellen mobilisierender Substanzen bekannt ist, haben bisher lediglich das myelopoietische Zytokin Granulozytenkolonien stimulierender Faktor (G-CSF) und, bei schlecht mobilisierenden Patienten, der CXCR4-Antagonist Plerixafor klinische Bedeutung erlangt. Durch die Aufnahme der Stammzellherstellung in das Arzneimittelgesetz ist vielen Ortes die Verantwortung für die Herstellung von Stammzellpräparaten und damit auch für die Stammzellmobilisierung an die Transfusionsmedizin übergegangen. Dieses fokussierte Review skizziert den Stand des Wissens zu Mechanismen der Stammzellmobilisierung speziell bezüglich der heute in der Klinik eingesetzten Agenzien und fasst die klinischen Erfahrungen und arzneimittelrechtlichen Aspekte der klinischen Stammzellmobilisierung zusammen.

Abstract

The term stem cell mobilization describes the pharmacologically enforced egress of hematopoietic stem cells from bone marrow into the peripheral blood. The clinical interest in stem cell mobilization originates from the possibility of extraction of mobilized stem cells from blood by leukoapheresis, for the purpose of transplantation in appropriately conditioned recipients. Thus today virtually all autologous and 80 % of allogeneic stem cell transplants use mobilized blood-derived stem cells as the transplant source. Despite the plethora of recognized mobilizing agents, thus far only the myelopoietic cytokine granulocyte-colony stimulating factor (G-CSF) and, for poorly mobilizing patients, the CXCR4 antagonist Plerixafor have achieved clinical relevance. Since the time that stem cell preparations were brought under the umbrella of the German Medicines Act, many transfusion services have assumed the responsibility for stem cell product manufacturing and consequently also for stem cell mobilization. This focussed review sketches our current understanding of the basic science surrounding molecular mechanisms of stem cell mobilization specifically pertaining to currently used clinical mobilizing agents and summarizes clinical experience and regulatory aspects of clinical stem cell mobilization.

 
  • Literatur

  • 1 Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2013; 27 (1) 24-31
  • 2 Ratajczak MZ. Spotlight series on stem cell mobilization: many hands on the ball, but who is the quarterback?. Leukemia 2010; 24 (10) 1665-1666
  • 3 Velders GA, Fibbe WE. Involvement of proteases in cytokine-induced hematopoietic stem cell mobilization. Ann N Y Acad Sci 2005; 1044: 60-69
  • 4 Adams GB, Chabner KT, Alley IR et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439 (7076) 599-603
  • 5 Zhang J, Niu C, Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425 (6960) 836-841
  • 6 Kiel MJ, Yilmaz OH, Iwashita T et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121 (7) 1109-1121
  • 7 Kiel MJ, Morrison SJ. Maintaining hematopoietic stem cells in the vascular niche. Immunity 2006; 25 (6) 862-864
  • 8 Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8 (4) 290-301
  • 9 Yin T, Li L. The stem cell niches in bone. J Clin Invest 2006; 116 (5) 1195-1201
  • 10 Bianco P. Bone and the hematopoietic niche: a tale of two stem cells. Blood 2011; 117 (20) 5281-5288
  • 11 Bourke VA, Watchman CJ, Reith JD et al. Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. Blood 2009; 114 (19) 4077-4080
  • 12 Lo CC, Fleming HE, Wu JW et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457 (7225) 92-96
  • 13 Watchman CJ, Bourke VA, Lyon JR et al. Spatial distribution of blood vessels and CD34+ hematopoietic stem and progenitor cells within the marrow cavities of human cancellous bone. J Nucl Med 2007; 48 (4) 645-654
  • 14 Xie Y, Yin T, Wiegraebe W et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457 (7225) 97-101
  • 15 Calvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425 (6960) 841-846
  • 16 Chang MK, Raggatt LJ, Alexander KA et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 2008; 181 (2) 1232-1244
  • 17 Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324 (5935) 1673-1677
  • 18 Haylock DN, Nilsson SK. Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle 2005; 4 (10) 1353-1355
  • 19 Nilsson SK, Johnston HM, Whitty GA et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106 (4) 1232-1239
  • 20 Park D, Sykes DB, Scadden DT. The hematopoietic stem cell niche. Front Biosci 2012; 17: 30-39
  • 21 Abkowitz JL, Catlin SN, McCallie MT et al. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 2002; 100 (7) 2665-2667
  • 22 Molineux G, Pojda Z, Hampson IN et al. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 1990; 76 (10) 2153-2158
  • 23 Abkowitz JL, Robinson AE, Kale S et al. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 2003; 102 (4) 1249-1253
  • 24 McBride RA, Simonsen M. Cellular and humoral phenomena during the inductive phase of parabiosis tolerance. Transplantation 1965; 3: 140-154
  • 25 Walker DG. Osteopetrosis cured by temporary parabiosis. Science 1973; 180 (4088) 875
  • 26 Harris JE, Ford CE, Barnes DW et al. Evidence from parabiosis for an afferent stream of cells. Nature 1964; 201: 886-887
  • 27 Croizat H, Frindel E, Tubiana M. The effect of partial body irradiation on haemopoietic stem cell migration. Cell Tissue Kinet 1980; 13 (3) 319-325
  • 28 Murate T, Utsumi M, Hotta T et al. Hematopoietic stem cell migration and proliferation after partial body irradiation: significant role of the spleen in hematopoietic recovery. Nihon Ketsueki Gakkai Zasshi 1983; 46 (4) 867-875
  • 29 Nervi B, Link DC, Dipersio JF. Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 2006; 99 (3) 690-705
  • 30 Fukuda S, Bian H, King AG et al. The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 2007; 110 (3) 860-869
  • 31 Hattori K, Heissig B, Tashiro K et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001; 97 (11) 3354-3360
  • 32 Laterveer L, Lindley IJ, Hamilton MS et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 1995; 85 (8) 2269-2275
  • 33 Laterveer L, Lindley IJ, Heemskerk DP et al. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8. Blood 1996; 87 (2) 781-788
  • 34 Pelus LM, Horowitz D, Cooper SC et al. Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 2002; 43 (3) 257-275
  • 35 Pelus LM, Bian H, Fukuda S et al. The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 2005; 33 (3) 295-307
  • 36 Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 2006; 34 (8) 1010-1020
  • 37 Bonig H, Chudziak D, Priestley G et al. Insights into the biology of mobilized hematopoietic stem/progenitor cells through innovative treatment schedules of the CXCR4 antagonist AMD3100. Exp Hematol 2009; 37 (3) 402-415
  • 38 Broxmeyer HE, Orschell CM, Clapp DW et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201 (8) 1307-1318
  • 39 Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood 1976; 47 (6) 1031-1039
  • 40 To LB, Davy ML, Haylock DN et al. Autotransplantation using peripheral blood stem cells mobilized by cyclophosphamide. Bone Marrow Transplant 1989; 4 (5) 595-596
  • 41 Bonig H, Wundes A, Chang KH et al. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49 d blocking antibody natalizumab. Blood 2008; 111 (7) 3439-3441
  • 42 Ramirez P, Rettig MP, Uy GL et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009; 114 (7) 1340-1343
  • 43 Velders GA, Pruijt JF, Verzaal P et al. Enhancement of G-CSF-induced stem cell mobilization by antibodies against the beta 2 integrins LFA-1 and Mac-1. Blood 2002; 100 (1) 327-333
  • 44 Cline MJ, Golde DW. Mobilization of hematopoietic stem cells (CFU-C) into the peripheral blood of man by endotoxin. Exp Hematol 1977; 5 (3) 186-190
  • 45 Papayannopoulou T, Priestley GV, Bonig H et al. The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 2003; 101 (12) 4739-4747
  • 46 Schneider OD, Weiss AA, Miller WE. Pertussis toxin signals through the TCR to initiate cross-desensitization of the chemokine receptor CXCR4. J Immunol 2009; 182 (9) 5730-5739
  • 47 Velders GA, van Os R, Hagoort H et al. Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood 2004; 103 (1) 340-346
  • 48 Barrett AJ, Longhurst P, Sneath P et al. Mobilization of CFU-C by exercise and ACTH induced stress in man. Exp Hematol 1978; 6 (7) 590-594
  • 49 Zaldivar F, Eliakim A, Radom-Aizik S et al. The effect of brief exercise on circulating CD34+ stem cells in early and late pubertal boys. Pediatr Res 2007; 61 (4) 491-495
  • 50 Lucas D, Battista M, Shi PA et al. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 2008; 3 (4) 364-366
  • 51 Mendez-Ferrer S, Lucas D, Battista M et al. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452 (7186) 442-447
  • 52 Mendez-Ferrer S, Chow A, Merad M et al. Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 2009; 16 (4) 235-242
  • 53 Chen C, Cao J, Song X et al. Adrenaline administration promotes the efficiency of granulocyte colony stimulating factor-mediated hematopoietic stem and progenitor cell mobilization in mice. Int J Hematol 2013; 97 (1) 50-57
  • 54 Lucas D, Bruns I, Battista M et al. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood 2012; 119 (17) 3962-3965
  • 55 Mendez-Ferrer S, Battista M, Frenette PS. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci 2010; 1192: 139-144
  • 56 Scheiermann C, Kunisaki Y, Lucas D et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 2012; 37 (2) 290-301
  • 57 Benner R, Rijnbeek AM, Molendijk W et al. Genetic control of lipopolysaccharide-induced mobilization of CFUs. Dissociation between early and delayed mobilization of CFUs in complement C5-deficient mice and LPS non-responder mice. Cell Tissue Kinet 1981; 14 (2) 143-151
  • 58 Kollet O, Dar A, Shivtiel S et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12 (6) 657-664
  • 59 Janowska-Wieczorek A, Marquez-Curtis LA, Shirvaikar N et al. The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion 2012; 52 (12) 2706-2716
  • 60 Wilschut IJ, Erkens-Versluis ME, Ploemacher RE et al. Studies on the mechanism of haemopoietic stem cell (CFUs) mobilization. A role of the complement system. Cell Tissue Kinet 1979; 12 (3) 299-311
  • 61 Tjwa M, Janssens S, Carmeliet P. Plasmin therapy enhances mobilization of HPCs after G-CSF. Blood 2008; 112 (10) 4048-4050
  • 62 Stiff PJ, Murgo AJ, Wittes RE et al. Quantification of the peripheral blood colony forming unit-culture rise following chemotherapy. Could leukocytaphereses replace bone marrow for autologous transplantation?. Transfusion 1983; 23 (6) 500-503
  • 63 Abrams RA, Johnston-Early A, Kramer C et al. Amplification of circulating granulocyte-monocyte stem cell numbers following chemotherapy in patients with extensive small cell carcinoma of the lung. Cancer Res 1981; 41 (1) 35-41
  • 64 Lohrmann HP, Schreml W, Lang M et al. Changes of granulopoiesis during and after adjuvant chemotherapy of breast cancer. Br J Haematol 1978; 40 (3) 369-381
  • 65 Lohrmann HP, Schreml W, Heimpel H. [Reaction of the human granulopoiesis to large doses of cyclophosphamide]. Verh Dtsch Ges Inn Med 1978; 84: 600-604
  • 66 To LB, Haylock DN, Kimber RJ et al. High levels of circulating haemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation. Br J Haematol 1984; 58 (3) 399-410
  • 67 Gianni AM, Bregni M, Siena S et al. Recombinant human granulocyte-macrophage colony-stimulating factor reduces hematologic toxicity and widens clinical applicability of high-dose cyclophosphamide treatment in breast cancer and non-Hodgkinʼs lymphoma. J Clin Oncol 1990; 8 (5) 768-778
  • 68 Welte K, Bonilla MA, Gillio AP et al. Recombinant human granulocyte colony-stimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med 1987; 165 (4) 941-948
  • 69 Zsebo KM, Cohen AM, Murdock DC et al. Recombinant human granulocyte colony stimulating factor: molecular and biological characterization. Immunobiology 1986; 172 (3-5) 175-184
  • 70 Duhrsen U, Villeval JL, Boyd J et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 1988; 72 (6) 2074-2081
  • 71 Socinski MA, Cannistra SA, Elias A et al. Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 1 (8596) 1194-1198
  • 72 Bensinger W, Singer J, Appelbaum F et al. Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 1993; 81 (11) 3158-3163
  • 73 Bensinger WI, Longin K, Appelbaum F et al. Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony stimulating factor (rhG-CSF): an analysis of factors correlating with the tempo of engraftment after transplantation. Br J Haematol 1994; 87 (4) 825-831
  • 74 Bensinger WI, Price TH, Dale DC et al. The effects of daily recombinant human granulocyte colony-stimulating factor administration on normal granulocyte donors undergoing leukapheresis. Blood 1993; 81 (7) 1883-1888
  • 75 Bensinger WI, Clift R, Martin P et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood 1996; 88 (7) 2794-2800
  • 76 Bensinger WI, Weaver CH, Appelbaum FR et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 1995; 85 (6) 1655-1658
  • 77 Bensinger WI, Clift RA, Anasetti C et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Stem Cells 1996; 14 (1) 90-105
  • 78 Bensinger WI, Buckner CD, Rowley S et al. Treatment of normal donors with recombinant growth factors for transplantation of allogeneic blood stem cells. Bone Marrow Transplant 1996; 17 (Suppl. 02) S19-S21
  • 79 Gratwohl A, Baldomero H, Aljurf M et al. Hematopoietic stem cell transplantation: a global perspective. JAMA 2010; 303 (16) 1617-1624
  • 80 Gratwohl A, Baldomero H, Schwendener A et al. The EBMT activity survey 2008: impact of team size, team density and new trends. Bone Marrow Transplant 2011; 46 (2) 174-191
  • 81 To LB, Levesque JP, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood 2011; 118 (17) 4530-4540
  • 82 National Marrow Donor Program. http://www.marrow.org
  • 83 Greenbaum AM, Link DC. Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 2011; 25 (2) 211-217
  • 84 Lapid K, Vagima Y, Kollet O et al. Egress and mobilization of hematopoietic stem and progenitor cells. StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008
  • 85 Motabi IH, Dipersio JF. Advances in stem cell mobilization. Blood Rev 2012; 26 (6) 267-278
  • 86 Ratajczak MZ, Kim C, Janowska-Wieczorek A et al. The expanding family of bone marrow homing factors for hematopoietic stem cells: stromal derived factor 1 is not the only player in the game. Scientific World Journal 2012; 2012: 758512
  • 87 Ratajczak MZ, Kim C. The use of chemokine receptor agonists in stem cell mobilization. Expert Opin Biol Ther 2012; 12 (3) 287-297
  • 88 Ratajczak MZ, Kim CH, Abdel-Latif A et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 2012; 26 (1) 63-72
  • 89 Rettig MP, Ansstas G, Dipersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 2012; 26 (1) 34-53
  • 90 Liu F, Poursine-Laurent J, Link DC. The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood 1997; 90 (7) 2522-2528
  • 91 Eash KJ, Greenbaum AM, Gopalan PK et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010; 120 (7) 2423-2431
  • 92 Liu F, Poursine-Laurent J, Link DC. Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95 (10) 3025-3031
  • 93 Christopher MJ, Rao M, Liu F et al. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208 (2) 251-260
  • 94 Levesque JP, Hendy J, Takamatsu Y et al. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30 (5) 440-449
  • 95 Winkler IG, Hendy J, Coughlin P et al. Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J Exp Med 2005; 201 (7) 1077-1088
  • 96 Christopherson KW, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002; 169 (12) 7000-7008
  • 97 Levesque JP, Takamatsu Y, Nilsson SK et al. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98 (5) 1289-1297
  • 98 Levesque JP, Hendy J, Takamatsu Y et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111 (2) 187-196
  • 99 Levesque JP, Hendy J, Winkler IG et al. Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31 (2) 109-117
  • 100 Levesque JP, Liu F, Simmons PJ et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104 (1) 65-72
  • 101 Winkler IG, Pettit AR, Raggatt LJ et al. Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 2012; 26 (7) 1594-1601
  • 102 Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 2008; 23 (11) 1765-1774
  • 103 Semerad CL, Christopher MJ, Liu F et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106 (9) 3020-3027
  • 104 Winkler IG, Sims NA, Pettit AR et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116 (23) 4815-4828
  • 105 Salvucci O, Jiang K, Gasperini P et al. MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1. Haematologica 2012; 97 (6) 818-826
  • 106 Kawabata K, Ujikawa M, Egawa T et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci U S A 1999; 96 (10) 5663-5667
  • 107 Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283 (5403) 845-848
  • 108 Sugiyama T, Kohara H, Noda M et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25 (6) 977-988
  • 109 Wright DE, Bowman EP, Wagers AJ et al. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195 (9) 1145-1154
  • 110 Aiuti A, Webb IJ, Bleul C et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185 (1) 111-120
  • 111 Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008; 205 (4) 777-783
  • 112 Dar A, Schajnovitz A, Lapid K et al. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 2011; 25 (8) 1286-1296
  • 113 Christopher MJ, Liu F, Hilton MJ et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009; 114 (7) 1331-1339
  • 114 Dar A, Goichberg P, Shinder V et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 2005; 6 (10) 1038-1046
  • 115 Imai K, Kobayashi M, Wang J et al. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 1999; 106 (4) 905-911
  • 116 Jung Y, Wang J, Schneider A et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006; 38 (4) 497-508
  • 117 Mendez-Ferrer S, Michurina TV, Ferraro F et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466 (7308) 829-834
  • 118 Nagasawa T, Hirota S, Tachibana K et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382 (6592) 635-638
  • 119 Katayama Y, Battista M, Kao WM et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124 (2) 407-421
  • 120 Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013; 495 (7440) 231-235
  • 121 Greenbaum A, Hsu YM, Day RB et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013; 495 (7440) 227-230
  • 122 Balabanian K, Lagane B, Pablos JL et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 2005; 105 (6) 2449-2457
  • 123 Balabanian K, Brotin E, Biajoux V et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood 2012; 119 (24) 5722-5730
  • 124 Kawai T, Choi U, Whiting-Theobald NL et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol 2005; 33 (4) 460-468
  • 125 Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol 2009; 16 (1) 20-26
  • 126 Tchernychev B, Ren Y, Sachdev P et al. Discovery of a CXCR4 agonist pepducin that mobilizes bone marrow hematopoietic cells. Proc Natl Acad Sci U S A 2010; 107 (51) 22255-22259
  • 127 Bonig H, Watts KL, Chang KH et al. Concurrent blockade of alpha4-integrin and CXCR4 in hematopoietic stem/progenitor cell mobilization. Stem Cells 2009; 27 (4) 836-837
  • 128 Devine SM, Flomenberg N, Vesole DH et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkinʼs lymphoma. J Clin Oncol 2004; 22 (6) 1095-1102
  • 129 Devine SM, Vij R, Rettig M et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 2008; 112 (4) 990-998
  • 130 Larochelle A, Krouse A, Metzger M et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 2006; 107 (9) 3772-3778
  • 131 Liles WC, Broxmeyer HE, Rodger E et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102 (8) 2728-2730
  • 132 Karpova D, Dauber K, Spohn G et al. Rapid and Potent Mobilization of Murine Hematopoietic Stem and Progenitor Cells by the Novel CXCR4 Antagonist POL5551. Blood 2013; [Abstract]
  • 133 Sweeney EA, Papayannopoulou T. Increase in circulating SDF-1 after treatment with sulfated glycans. The role of SDF-1 in mobilization. Ann N Y Acad Sci 2001; 938: 48-52
  • 134 Sweeney EA, Lortat-Jacob H, Priestley GV et al. Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002; 99 (1) 44-51
  • 135 Juarez JG, Harun N, Thien M et al. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 2012; 119 (3) 707-716
  • 136 Ratajczak MZ, Kim C, Wu W et al. The role of innate immunity in trafficking of hematopoietic stem cells-an emerging link between activation of complement cascade and chemotactic gradients of bioactive sphingolipids. Adv Exp Med Biol 2012; 946: 37-54
  • 137 Jalili A, Shirvaikar N, Marquez-Curtis L et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 2010; 38 (4) 321-332
  • 138 Liles WC, Rodger E, Broxmeyer HE et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 2005; 45 (3) 295-300
  • 139 Dipersio JF, Micallef IN, Stiff PJ et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkinʼs lymphoma. J Clin Oncol 2009; 27 (28) 4767-4773
  • 140 Dipersio JF, Stadtmauer EA, Nademanee A et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113 (23) 5720-5726
  • 141 Dipersio JF, Uy GL, Yasothan U et al. Plerixafor. Nat Rev Drug Discov 2009; 8 (2) 105-106
  • 142 Jantunen E, Penttila K, Pyorala M et al. Addition of plerixafor to a chemotherapy plus G-CSF mobilization in hard-to-mobilize patients. Bone Marrow Transplant 2011; 46 (2) 308-309
  • 143 Jantunen E, Lemoli RM. Preemptive use of plerixafor in difficult-to-mobilize patients: an emerging concept. Transfusion 2012; 52 (4) 906-914
  • 144 Kubota N, Orita T, Hattori K et al. Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem 1990; 107 (3) 486-492
  • 145 Bonig H, Silbermann S, Weller S et al. Glycosylated vs. non-glycosylated granulocyte colony-stimulating factor (G-CSF)–results of a prospective randomised monocentre study. Bone Marrow Transplant 2001; 28 (3) 259-264
  • 146 Houston AC, Stevens LA, Cour V. Pharmacokinetics of glycosylated recombinant human granulocyte colony-stimulating factor (lenograstim) in healthy male volunteers. Br J Clin Pharmacol 1999; 47 (3) 279-284
  • 147 Isidori A, Tani M, Bonifazi F et al. Phase II study of a single pegfilgrastim injection as an adjunct to chemotherapy to mobilize stem cells into the peripheral blood of pretreated lymphoma patients. Haematologica 2005; 90 (2) 225-231
  • 148 Russell N, Mesters R, Schubert J et al. A phase 2 pilot study of pegfilgrastim and filgrastim for mobilizing peripheral blood progenitor cells in patients with non-Hodgkinʼs lymphoma receiving chemotherapy. Haematologica 2008; 93 (3) 405-412
  • 149 Neupogen Safety Information. http://pi.amgen.com/united_states/neupogen/neupogen_ppi_pt_english.pdf last update: 3/2013; last access: 28.06.2013
  • 150 Kroger N, Zeller W, Hassan HT et al. Stem cell mobilization with G-CSF alone in breast cancer patients: higher progenitor cell yield by delivering divided doses (2 × 5 microg/kg) compared to a single dose (1 × 10 microg/kg). Bone Marrow Transplant 1999; 23 (2) 125-129
  • 151 Kroger N, Sonnenberg S, Cortes-Dericks L et al. Kinetics of G-CSF and CD34+ cell mobilization after once or twice daily stimulation with rHu granulocyte-stimulating factor (lenograstim) in healthy volunteers: an intraindividual crossover study. Transfusion 2004; 44 (1) 104-110
  • 152 Lee V, Li CK, Shing MM et al. Single vs. twice daily G-CSF dose for peripheral blood stem cells harvest in normal donors and children with non-malignant diseases. Bone Marrow Transplant 2000; 25 (9) 931-935
  • 153 Mueller MM, Bialleck H, Bomke B et al. Safety and efficacy of healthy volunteer stem cell mobilization with filgrastim G-CSF and mobilized stem cell apheresis: results of a prospective longitudinal 5-year follow-up study. Vox Sang 2012; 121 (8) e50-e56
  • 154 Cohen KS, Cheng S, Larson MG et al. Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood 2013; 121 (8) e50-e56
  • 155 Roberts AW, Foote S, Alexander WS et al. Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 1997; 89 (8) 2736-2744
  • 156 Ryan MA, Nattamai KJ, Xing E et al. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization. Nat Med 2010; 16 (10) 1141-1146
  • 157 Bogunia-Kubik K, Gieryng A, Dlubek D et al. The CXCL12–3ʼA allele is associated with a higher mobilization yield of CD34 progenitors to the peripheral blood of healthy donors for allogeneic transplantation. Bone Marrow Transplant 2009; 44 (5) 273-278
  • 158 Martin-Antonio B, Carmona M, Falantes J et al. Impact of constitutional polymorphisms in VCAM1 and CD44 on CD34+ cell collection yield after administration of granulocyte colony-stimulating factor to healthy donors. Haematologica 2011; 96 (1) 102-109
  • 159 Bornhauser M, Lenk J, Kramer M et al. Efficacy of G-CSF mobilization is not associated with the CXCL12 801 G/A-polymorphism: a study in 463 healthy volunteer donors. Bone Marrow Transplant 2013; 8-0013 [Abstract]
  • 160 Fournel C, Imbert AM, Bondi F et al.. SNP analysis of DNA obtained from 225 related donors for HSCT reveals the relation between CD34+ cell mobilization intensity in response to rhG-CSF treatment and genetic polymorphisms in the VLA4 and VCAM-1 genes. Bone Marrow Transplant 2013; 8-0013 [Abstract]
  • 161 Holig K, Kramer M, Kroschinsky F et al. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood 2009; 114 (18) 3757-3763
  • 162 Armitage S, Hargreaves R, Samson D et al. CD34 counts to predict the adequate collection of peripheral blood progenitor cells. Bone Marrow Transplant 1997; 20 (7) 587-591
  • 163 Elliott C, Samson DM, Armitage S et al. When to harvest peripheral-blood stem cells after mobilization therapy: prediction of CD34-positive cell yield by preceding day CD34-positive concentration in peripheral blood. J Clin Oncol 1996; 14 (3) 970-973
  • 164 Gutensohn K, Magens MM, Kuehnl P et al. Increasing the economic efficacy of peripheral blood progenitor cell collections by monitoring peripheral blood CD34+ concentrations. Transfusion 2010; 50 (3) 656-662
  • 165 Hayashi N, Kinoshita H, Yukawa E et al. Pharmacokinetic and pharmacodynamic analysis of subcutaneous recombinant human granulocyte colony stimulating factor (lenograstim) administration. J Clin Pharmacol 1999; 39 (6) 583-592
  • 166 Hayashi N, Aso H, Higashida M et al. Estimation of rhG-CSF absorption kinetics after subcutaneous administration using a modified Wagner-Nelson method with a nonlinear elimination model. Eur J Pharm Sci 2001; 13 (2) 151-158
  • 167 Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 1996; 28 (4) 625-658
  • 168 Sturgill MG, Huhn RD, Drachtman RA et al. Pharmacokinetics of intravenous recombinant human granulocyte colony-stimulating factor (rhG-CSF) in children receiving myelosuppressive cancer chemotherapy: clearance increases in relation to absolute neutrophil count with repeated dosing. Am J Hematol 1997; 54 (2) 124-130
  • 169 Watari K, Ozawa K, Takahashi S et al. Pharmacokinetic studies of intravenous glycosylated recombinant human granulocyte colony-stimulating factor in various hematological disorders: inverse correlation between the half-life and bone marrow myeloid cell pool. Int J Hematol 1997; 66 (1) 57-67
  • 170 Reinhardt P, Brauninger S, Bialleck H et al. Automatic interface-controlled apheresis collection of stem/progenitor cells: results from an autologous donor validation trial of a novel stem cell apheresis device. Transfusion 2011; 51 (6) 1321-1330
  • 171 Bensinger W, Dipersio JF, McCarty JM. Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 2009; 43 (3) 181-195
  • 172 Lemoli RM. New strategies for stem cell mobilization. Mediterr J Hematol Infect Dis 2012; 4 (1) e2012066
  • 173 Calandra G, McCarty J, McGuirk J et al. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkinʼs lymphoma, Hodgkinʼs disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 2008; 41 (4) 331-338
  • 174 DʼAddio A, Curti A, Worel N et al. The addition of plerixafor is safe and allows adequate PBSC collection in multiple myeloma and lymphoma patients poor mobilizers after chemotherapy and G-CSF. Bone Marrow Transplant 2011; 46 (3) 356-363
  • 175 Duarte RF, Shaw BE, Marin P et al. Plerixafor plus granulocyte CSF can mobilize hematopoietic stem cells from multiple myeloma and lymphoma patients failing previous mobilization attempts: EU compassionate use data. Bone Marrow Transplant 2011; 46 (1) 52-58
  • 176 Hubel K, Fresen MM, Salwender H et al. Plerixafor with and without chemotherapy in poor mobilizers: results from the German compassionate use program. Bone Marrow Transplant 2011; 46 (8) 1045-1052
  • 177 Tricot G, Cottler-Fox MH, Calandra G. Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers, including assessment of tumor cell mobilization. Bone Marrow Transplant 2010; 45 (1) 63-68
  • 178 Jiang L, Malik S, Litzow M et al. Hematopoietic stem cells from poor and good mobilizers are qualitatively equivalent. Transfusion 2012; 52 (3) 542-548
  • 179 Anderlini P, Przepiorka D, Champlin R et al. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 1996; 88 (8) 2819-2825
  • 180 de Haas M, Kerst JM, van der Schoot CE et al. Granulocyte colony-stimulating factor administration to healthy volunteers: analysis of the immediate activating effects on circulating neutrophils. Blood 1994; 84 (11) 3885-3894
  • 181 Falanga A, Marchetti M, Evangelista V et al. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood 1999; 93 (8) 2506-2514
  • 182 Anderlini P, Champlin RE. Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: recent findings and current challenges. Blood 2008; 111 (4) 1767-1772
  • 183 Franzke A, Piao W, Lauber J et al. G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood 2003; 102 (2) 734-739
  • 184 Daikeler T, Tichelli A, Passweg J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr Res 2012; 71(4 Pt 2): 439-444
  • 185 Bowen JD, Kraft GH, Wundes A et al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 2012; 47 (7) 946-951
  • 186 Abboud M, Laver J, Blau CA. Granulocytosis causing sickle-cell crisis. Lancet 1998; 351 (9107) 959
  • 187 Fitzhugh CD, Hsieh MM, Bolan CD et al. Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium?. Cytotherapy 2009; 11 (4) 464-471
  • 188 Akizuki S, Mizorogi F, Inoue T et al. Pharmacokinetics and adverse events following 5-day repeated administration of lenograstim, a recombinant human granulocyte colony-stimulating factor, in healthy subjects. Bone Marrow Transplant 2000; 26 (9) 939-946
  • 189 Anderlini P, Przepiorka D, Seong D et al. Clinical toxicity and laboratory effects of granulocyte-colony-stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion 1996; 36 (7) 590-595
  • 190 Balaguer H, Galmes A, Ventayol G et al. Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion 2004; 44 (8) 1260-1261
  • 191 Tigue CC, McKoy JM, Evens AM et al. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant 2007; 40 (3) 185-192
  • 192 Winkler IG, Bendall LJ, Forristal CE et al. B-lymphopoiesis is stopped by mobilizing doses of G-CSF and is rescued by overexpression of the anti-apoptotic protein Bcl2. Haematologica 2013; 98 (3) 325-333
  • 193 Dorshkind K. In vivo administration of recombinant granulocyte-macrophage colony-stimulating factor results in a reversible inhibition of primary B lymphopoiesis. J Immunol 1991; 146 (12) 4204-4208
  • 194 Marmier-Savet C, Larosa F, Legrand F et al. Persistence of lymphocyte function perturbations after granulocyte-colony-stimulating factor mobilization and cytapheresis in normal peripheral blood stem cell donors. Transfusion 2010; 50 (12) 2676-2685
  • 195 Amariglio N, Jacob-Hirsch J, Shimoni A et al. Changes in gene expression pattern following granulocyte colony-stimulating factor administration to normal stem cell sibling donors. Acta Haematol 2007; 117 (2) 68-73
  • 196 Hernandez JM, Castilla C, Gutierrez NC et al. Mobilisation with G-CSF in healthy donors promotes a high but temporal deregulation of genes. Leukemia 2005; 19 (6) 1088-1091
  • 197 Hirsch B, Oseth L, Cain M et al. Effects of granulocyte-colony stimulating factor on chromosome aneuploidy and replication asynchrony in healthy peripheral blood stem cell donors. Blood 2011; 118 (9) 2602-2608
  • 198 Kaplinsky C, Trakhtenbrot L, Hardan I et al. Tetraploid myeloid cells in donors of peripheral blood stem cells treated with rhG-CSF. Bone Marrow Transplant 2003; 32 (1) 31-34
  • 199 Marmier-Savet C, Larosa F, Legrand F et al. G-CSF-induced aneuploidy does not affect CD34+ cells and does not require cell division. Blood 2010; 115 (4) 910-911
  • 200 Nagler A, Korenstein-Ilan A, Amiel A et al. Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells. Exp Hematol 2004; 32 (1) 122-130
  • 201 Sloand EM, Yong AS, Ramkissoon S et al. Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci U S A 2006; 103 (39) 14483-14488
  • 202 Dreger P, Suttorp M, Haferlach T et al. Allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells for treatment of engraftment failure after bone marrow transplantation. Blood 1993; 81 (5) 1404-1407
  • 203 Dreger P, Haferlach T, Eckstein V et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 1994; 87 (3) 609-613
  • 204 Korbling M, Przepiorka D, Huh YO et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 1995; 85 (6) 1659-1665
  • 205 Russell NH, Hunter A, Rogers S et al. Peripheral blood stem cells as an alternative to marrow for allogeneic transplantation. Lancet 1993; 341 (8858) 1482
  • 206 Schmitz N, Dreger P, Suttorp M et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 1995; 85 (6) 1666-1672
  • 207 Schmitz N, Linch DC, Dreger P et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347 (8998) 353-357
  • 208 Schmitz N, Eapen M, Horowitz MM et al. Long-term outcome of patients given transplants of mobilized blood or bone marrow: A report from the International Bone Marrow Transplant Registry and the European Group for Blood and Marrow Transplantation. Blood 2006; 108 (13) 4288-4290
  • 209 Anasetti C, Logan BR, Lee SJ et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med 2012; 367 (16) 1487-1496
  • 210 Meisel R, Klingebiel T, Dilloo D. Peripheral blood stem cells versus bone marrow in pediatric unrelated donor stem cell transplantation. Blood 2013; 121 (5) 863-865
  • 211 Bacigalupo A, Zikos P, Van Lint MT et al. Allogeneic bone marrow or peripheral blood cell transplants in adults with hematologic malignancies: a single-center experience. Exp Hematol 1998; 26 (5) 409-414
  • 212 Storek J, Gooley T, Siadak M et al. Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease. Blood 1997; 90 (12) 4705-4709
  • 213 Mielcarek M, Storer B, Martin PJ et al. Long-term outcomes after transplantation of HLA-identical related G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow. Blood 2012; 119 (11) 2675-2678
  • 214 Handgretinger R. New approaches to graft engineering for haploidentical bone marrow transplantation. Semin Oncol 2012; 39 (6) 664-673
  • 215 Handgretinger R. Negative depletion of CD3(+) and TcRalphabeta(+) T cells. Curr Opin Hematol 2012; 19 (6) 434-439
  • 216 Bethge WA, Faul C, Bornhauser M et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis 2008; 40 (1) 13-19
  • 217 Schellekens H. When biotech proteins go off-patent. Trends Biotechnol 2004; 22 (8) 406-410
  • 218 Schellekens H. Assessing the bioequivalence of biosimilars The Retacrit case. Drug Discov Today 2009; 14 (9-10) 495-499
  • 219 Sharma B. Immunogenicity of therapeutic proteins. Part 2: impact of container closures. Biotechnol Adv 2007; 25 (3) 318-324
  • 220 Sharma B. Immunogenicity of therapeutic proteins. Part 3: impact of manufacturing changes. Biotechnol Adv 2007; 25 (3) 325-331
  • 221 Sharma B. Immunogenicity of therapeutic proteins. Part 1: impact of product handling. Biotechnol Adv 2007; 25 (3) 310-317
  • 222 Lefrere F, Brignier AC, Elie C et al. First experience of autologous peripheral blood stem cell mobilization with biosimilar granulocyte colony-stimulating factor. Adv Ther 2011; 28 (4) 304-310
  • 223 Schmitt M, Xu X, Hilgendorf I et al. Mobilization of PBSC for allogeneic transplantation by the use of the G-CSF biosimilar XM02 in healthy donors. Bone Marrow Transplant 2013;
  • 224 Sorgel F, Lerch H, Lauber T. Physicochemical and biologic comparability of a biosimilar granulocyte colony-stimulating factor with its reference product. BioDrugs 2010; 24 (6) 347-357
  • 225 Mellstedt H, Niederwieser D, Ludwig H. The challenge of biosimilars. Ann Oncol 2008; 19 (3) 411-419
  • 226 Shaw BE, Confer DL, Hwang WY et al. Concerns about the use of biosimilar granulocyte colony-stimulating factors for the mobilization of stem cells in normal donors: position of the World Marrow Donor Association. Haematologica 2011; 96 (7) 942-947
  • 227 Weise M, Bielsky MC, De SK et al. Biosimilars: what clinicians should know. Blood 2012; 120 (26) 5111-5117
  • 228 Schmitt S, Weinhold N, Dembowsky K et al. First Results of a Phase-II Study with the New CXCR4 Antagonist POL6326 to Mobilize Hematopoietic Stem Cells (HSC) In Multiple Myeloma (MM). Blood 2013; [Abstract]
  • 229 Safety and Efficacy of POL6326 for Mobilization of Hematopoietic Stem Cells in Healthy Volunteers. http://clinicaltrials.gov/ct2/show/NCT01841476?term=pol6326&rank=4 last update: 4/2013; last access: 28.06.2013
  • 230 http://www.gesetze-im-internet.de/bundesrecht/amg_1976/gesamt.pdf last update: 20.04.2013; last access: 28.06.2013
  • 231 http://www.gesetze-im-internet.de/tfg/BJNR175200998.html last update: 17.07.2009; last access: 28.06.2013
  • 232 Wissenschaftlicher Beirat der Bundesärztekammer. Richtlinien zur Transplantation peripherer Blutstammzellen. Deutsches Ärzteblatt 1997; 94 (23) A-1584-92