Semin Speech Lang 2012; 33(03): 188-202
DOI: 10.1055/s-0032-1320039
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Transcranial Brain Stimulation to Treat Aphasia: A Clinical Perspective

Julius Fridriksson
1   Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
,
H. Isabel Hubbard
1   Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
,
Sarah Grace Hudspeth
1   Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
31 July 2012 (online)

Abstract

Transcranial brain stimulation was first introduced and described during mid-1900s. Since that time, the literature on brain stimulation has expanded with spurious advances in techniques and applications, from its use as a purely investigative tool used to better understand brain mechanisms to its use as a clinical treatment for neurologic diseases. This article offers a brief overview of the development, history, and mechanisms of transcranial brain stimulation, as well as an in-depth discussion of transcranial magnetic stimulation and transcranial direct current stimulation; two methods currently being investigated as treatments for aphasia. Our aim is to provide speech-language pathologists with an overview of the current state of literature on transcranial brain stimulation, as initial findings show it may be a promising new tool for aphasia rehabilitation.

 
  • References

  • 1 Kelly H, Brady MC, Enderby P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev 2010; (5) 1-40
  • 2 Robey RR. A meta-analysis of clinical outcomes in the treatment of aphasia. J Speech Lang Hear Res 1998; 41 (1) 172-187
  • 3 Bhogal SK, Teasell R, Speechley M. Intensity of aphasia therapy, impact on recovery. Stroke 2003; 34 (4) 987-993
  • 4 Crinion JT, Leff AP. Recovery and treatment of aphasia after stroke: functional imaging studies. Curr Opin Neurol 2007; 20 (6) 667-673
  • 5 Fridriksson J. Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. J Neurosci 2010; 30 (35) 11558-11564
  • 6 Green DW, Grogan A, Crinion J, Ali N, Sutton C, Price CJ. Language control and parallel recovery of language in individuals with aphasia. Aphasiology 2010; 24 (2) 188-209
  • 7 Fridriksson J, Richardson JD, Fillmore P, Cai B. Left hemisphere plasticity and aphasia recovery. Neuroimage 2012; 60 (2) 854-863
  • 8 Turkeltaub PE, Coslett HB, Thomas AL , et al. The right hemisphere is not unitary in its role in aphasia recovery. Cortex 2011; ; In press
  • 9 Norton A, Zipse L, Marchina S, Schlaug G. Melodic intonation therapy: shared insights on how it is done and why it might help. Ann N Y Acad Sci 2009; 1169: 431-436
  • 10 Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 2010; 41 (6) 1229-1236
  • 11 Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke 2011; 42 (3) 819-821
  • 12 Fiori V, Coccia M, Marinelli CV , et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci 2011; 23 (9) 2309-2323
  • 13 Holland R, Leff AP, Josephs O , et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol 2011; 21 (16) 1403-1407
  • 14 Naeser MA, Martin PI, Nicholas M , et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang 2005; 93 (1) 95-105
  • 15 Naeser MA, Martin PI, Nicholas M , et al. Improved naming after TMS treatments in a chronic, global aphasia patient—case report. Neurocase 2005; 11 (3) 182-193
  • 16 Naeser MA, Martin PI, Treglia E , et al. Research with rTMS in the treatment of aphasia. Restor Neurol Neurosci 2010; 28 (4) 511-529
  • 17 Naeser MA, Martin PI, Lundgren K , et al. Improved language in a chronic nonfluent aphasia patient after treatment with CPAP and TMS. Cogn Behav Neurol 2010; 23 (1) 29-38
  • 18 Naeser MA, Martin PI, Ho M , et al. Transcranial magnetic stimulation and aphasia rehabilitation. Arch Phys Med Rehabil 2012; 93 (1, Suppl) S26-S34
  • 19 Martin PI, Naeser MA, Ho M , et al. Overt naming fMRI pre- and post-TMS: two nonfluent aphasia patients, with and without improved naming post-TMS. Brain Lang 2009; 111 (1) 20-35
  • 20 Hamilton RH, Sanders L, Benson J , et al. Stimulating conversation: enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang 2010; 113 (1) 45-50
  • 21 Barwood CH, Murdoch BE, Whelan BM , et al. Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. Eur J Neurol 2011; 18 (7) 935-943
  • 22 Weiduschat N, Thiel A, Rubi-Fessen I , et al. Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke 2011; 42 (2) 409-415
  • 23 Kang EK, Kim YK, Sohn HM, Cohen LG, Paik NJ. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca's homologue area. Restor Neurol Neurosci 2011; 29 (3) 141-152
  • 24 Kim SG, Ogawa S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 2012; 32 (7) 1188-1206
  • 25 Penfield W, Roberts L. Speech and Brain Mechanisms. Princeton: Princeton University Press; 1959
  • 26 Gualtierotti T, Paterson AS. Electrical stimulation of the unexposed cerebral cortex. J Physiol 1954; 125 (2) 278-291
  • 27 Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980; 285 (5762) 227
  • 28 Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 1 (8437) 1106-1107
  • 29 Barker AT, Freeston IL, Jalinous R, Jarratt JA. Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 1987; 20 (1) 100-109
  • 30 George MS, Wassermann EM, Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci 1996; 8 (4) 373-382
  • 31 Di Lazzaro V, Oliviero A, Profice P , et al. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 1998; 109 (5) 397-401
  • 32 George MS. Transcranial magnetic stimulation for the treatment of depression. Expert Rev Neurother 2010; 10 (11) 1761-1772
  • 33 O'Reardon JP, Solvason HB, Janicak PG , et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 2007; 62 (11) 1208-1216
  • 34 Padberg F, George MS. Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Exp Neurol 2009; 219 (1) 2-13
  • 35 Oliveri M. Brain stimulation procedures for treatment of contralesional spatial neglect. Restor Neurol Neurosci 2011; 29 (6) 421-425
  • 36 Zaghi S, Thiele B, Pimentel D, Pimentel T, Fregni F. Assessment and treatment of pain with non-invasive cortical stimulation. Restor Neurol Neurosci 2011; 29 (6) 439-451
  • 37 Bentwich J, Dobronevsky E, Aichenbaum S , et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm 2011; 118 (3) 463-471
  • 38 Groppa S, Oliviero A, Eisen A , et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2012; 123 (5) 858-882
  • 39 Hoyer EH, Celnik PA. Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci 2011; 29 (6) 395-409
  • 40 Mori F, Koch G, Foti C, Bernardi G, Centonze D. The use of repetitive transcranial magnetic stimulation (rTMS) for the treatment of spasticity. Prog Brain Res 2009; 175: 429-439
  • 41 Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol Ther 2012; 133 (1) 98-107
  • 42 Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive magnetic transcranial stimulation of the human brain. Brain Stimulat 2010; 3 (2) 95-118
  • 43 Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD. Stimulation of the human motor cortex through the scalp. Exp Physiol 1991; 76 (2) 159-200
  • 44 Epstein CM, Schwartzberg DG, Davey KR, Sudderth DB. Localizing the site of magnetic brain stimulation in humans. Neurology 1990; 40 (4) 666-670
  • 45 Hallett M, Epstein CM, Berardelli A, Sackeim H, Maccabee P. Topics in transcranial magnetic stimulation. Suppl Clin Neurophysiol 2000; 53: 301-311
  • 46 Pascual-Leone A, Gates JR, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 1991; 41 (5) 697-702
  • 47 Murakami T, Restle J, Ziemann U. Effective connectivity hierarchically links temporoparietal and frontal areas of the auditory dorsal stream with the motor cortex lip area during speech perception. Brain Lang 2011; [Epub ahead of print]
  • 48 Whitney C, Kirk M, O'Sullivan J, Lambon Ralph MA, Jefferies E. Executive semantic processing is underpinned by a large-scale neural network: revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS. J Cogn Neurosci 2012; 24 (1) 133-147
  • 49 Floel A, Poeppel D, Buffalo EA , et al. Prefrontal cortex asymmetry for memory encoding of words and abstract shapes. Cereb Cortex 2004; 14 (4) 404-409
  • 50 Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994; 117 (Pt 4) 847-858
  • 51 Pascual-Leone A, Hallett M. Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport 1994; 5 (18) 2517-2520
  • 52 Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 1998; 15 (4) 333-343
  • 53 Chen R, Classen J, Gerloff C , et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997; 48 (5) 1398-1403
  • 54 Kimbrell TA, Little JT, Dunn RT , et al. Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 1999; 46 (12) 1603-1613
  • 55 Feinsod M, Kreinin B, Chistyakov A, Klein E. Preliminary evidence for a beneficial effect of low-frequency, repetitive transcranial magnetic stimulation in patients with major depression and schizophrenia. Depress Anxiety 1998; 7 (2) 65-68
  • 56 Tergau F, Wanschura V, Canelo M , et al. Complete suppression of voluntary motor drive during the silent period after transcranial magnetic stimulation. Exp Brain Res 1999; 124 (4) 447-454
  • 57 Tsuji T, Rothwell JC. Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 2002; 540 (Pt 1) 367-376
  • 58 George MS, Wassermann EM, Williams WA , et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 1995; 6 (14) 1853-1856
  • 59 Kakuda W, Abo M, Momosaki R, Morooka A. Therapeutic application of 6-Hz-primed low-frequency rTMS combined with intensive speech therapy for post-stroke aphasia. Brain Inj 2011; 25 (12) 1242-1248
  • 60 Crosson B, Moore AB, McGregor KM , et al. Regional changes in word-production laterality after a naming treatment designed to produce a rightward shift in frontal activity. Brain Lang 2009; 111 (2) 73-85
  • 61 Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang 2011; 118 (1-2) 40-50
  • 62 Naeser MA, Martin PI, Theoret H , et al. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia. Brain Lang 2011; 119 (3) 206-213
  • 63 Winhuisen L, Thiel A, Schumacher B , et al. Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 2005; 36 (8) 1759-1763
  • 64 Winhuisen L, Thiel A, Schumacher B , et al. The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke 2007; 38 (4) 1286-1292
  • 65 Kakuda W, Abo M, Kaito N, Watanabe M, Senoo A. Functional MRI-based therapeutic rTMS strategy for aphasic stroke patients: a case series pilot study. Int J Neurosci 2010; 120 (1) 60-66
  • 66 Kaplan E, Goodglass H, Weintraub S. Boston Naming Test. 2nd ed. Philadelphia: Lippincott, Williams, & Wilkins; 2001
  • 67 Goodglass H, Kaplan E, Barresi B. Boston Diagnostic Aphasia Examination. 3rd ed. San Antonio: PsychCorp; 2000
  • 68 Kertesz A. The Western Aphasia Battery—Revised. New York: Grune & Stratton; 2007
  • 69 Helms-Estabrooks N. Cognitive Linguistic Quick Test. San Antonio: PsychCorp; 2001
  • 70 Barwood CH, Murdoch BE, Whelan BM , et al. Improved expressive and receptive language abilities in nonfluent aphasic stroke patients after application of rTMS: an open protocol case series. Brain Stimul 2011; [Epub ahead of print]
  • 71 Kakuda W, Abo M, Uruma G, Kaito N, Watanabe M. Low-frequency rTMS with language therapy over a 3-month period for sensory-dominant aphasia: case series of two post-stroke Japanese patients. Brain Inj 2010; 24 (9) 1113-1117
  • 72 Song S, Sandrini M, Cohen LG. Modifying somatosensory processing with non-invasive brain stimulation. Restor Neurol Neurosci 2011; 29 (6) 427-437
  • 73 Pascual-Leone A, Houser CM, Reese K , et al. Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 1993; 89 (2) 120-130
  • 74 Rossi S, Hallett M, Rossini PM, Pascual-Leone A ; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120 (12) 2008-2039
  • 75 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527 (Pt 3) 633-639
  • 76 Rosenkranz K, Nitsche MA, Tergau F, Paulus W. Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci Lett 2000; 296 (1) 61-63
  • 77 Levy WJ, York DH, McCaffrey M, Tanzer F. Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 1984; 15 (3) 287-302
  • 78 Mills KR, Murray NM, Hess CW. Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 1987; 20 (1) 164-168
  • 79 Fritsch B, Reis J, Martinowich K , et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66 (2) 198-204
  • 80 Nitsche MA, Lampe C, Antal A , et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 2006; 23 (6) 1651-1657
  • 81 Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361 (6407) 31-39
  • 82 Marangolo P, Marinelli CV, Bonifazi S , et al. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res 2011; 225 (2) 498-504
  • 83 Vines BW, Norton AC, Schlaug G. Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front Psychol 2011; 2: 230
  • 84 Monti A, Cogiamanian F, Marceglia S , et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 2008; 79 (4) 451-453
  • 85 You DS, Kim DY, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke's area improves comprehension in subacute stroke patients. Brain Lang 2011; 119 (1) 1-5
  • 86 Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulat 2011; 4 (3) 169-174
  • 87 Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 2005; 64 (5) 872-875
  • 88 Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 2003; 114 (11) 2220-2222 , author reply 2222–2223
  • 89 Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol 2009; 120 (6) 1033-1034
  • 90 Kessler SK, Turkeltaub PE, Benson JG, Hamilton RH. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul 2011; 5 (2) 155-162
  • 91 Fregni F, Boggio PS, Nitsche M , et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 2005; 166 (1) 23-30
  • 92 DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp 2011; (51) pii:2744
  • 93 Bikson M, Datta A, Rahman A, Scaturro J. Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size. Clin Neurophysiol 2010; 121 (12) 1976-1978
  • 94 Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri -precise head model of transcranial DC stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulat 2009; 2 (4) 201-207
  • 95 Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng 2011; 8 (4) 046011
  • 96 Martin PI, Naeser MA, Theoret H , et al. Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 2004; 25 (2) 181-191