Synlett 2013; 24(7): 860-864
DOI: 10.1055/s-0032-1318479
letter
© Georg Thieme Verlag Stuttgart · New York

Chemoselective Suzuki–Miyaura Cross-Coupling Reactions of 6-Bromo-3-(trifluoromethylsulfonyloxy)flavone

Omer A. Akrawi
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
,
Tamás Patonay
b   Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
,
Krisztina Kónya
b   Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
c   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 14 January 2013

Accepted after revision: 26 February 2013

Publication Date:
08 March 2013 (online)


Abstract

Arylated flavones were prepared by Suzuki–Miyaura reactions of 6-bromo-3-(trifluoro-sulfonyloxy)flavone. The reactions proceeded with very good chemoselectivity in favor of position 3.

 
  • References and Notes

    • 1a The Handbook of Natural Flavonoids . Harborne JB, Baxter H. 1999, Vol. 2; 8: 79
    • 1b Aherne SA, O’Brien NM. Nutrition 2002; 18: 75
    • 1c Middleton EJr, Kandaswami C, Theoharides TC. Pharmacol. Rev. 2000; 52: 673
    • 1d Middleton E, Kandaswami C In The Flavanoids: Advance in Research since 1986 . Harborne JB. Chapman and Hall; London: 1994: 619
    • 1e Wong E, Harborne JB, Mabry TJ, Mabry H. In The Flavanoids . Harborne JB, Mabry TJ, Mabry H. Chapman and Hall; London: 1975: 184
  • 2 Malikov VM, Yuldashev MP. Chem. Nat. Compd. 2002; 38: 358
  • 3 Huck CW, Huber CG, Ongania KH, Bonn GK. J. Chromatogr. A 2000; 453
  • 4 Nagao T, Abe F, Kinjo J, Okabe H. Biol. Pharm. Bull. 2002; 7: 875
  • 5 Carlo GDi, Mascolo N, Izzo AA, Capasso F. Life Sci. 1999; 65: 337
  • 6 Perez-Vizcaino F, Ibarra M, Cogolludo AL, Duarte J, Zaragoza-Arnaez F, Moreno L, Lopez-Lopez G, Tamargo J. J. Pharmacol. Exp. Ther. 2002; 301: 66
  • 10 Jain A, Martin MC, Parveen N, Khan NU, Parish JH, Hadi SM. Phytother Res. 1999; 13: 609
  • 11 Landolfi R, Mower RL, Steiner M. Biochem. Pharmacol. 1984; 32: 1525
  • 12 Yamada J, Tomita Y. Biosci. Biotech. Biochem. 1994; 58: 2197
  • 13 Matsuo N, Yamada K, Yamashita K, Shoji K, Mori M, Sugano M. In Vitro Cell Dev. Biol. 1996; 32: 340
    • 14a Han C. Cancer Lett. 1997; 114: 153
    • 14b Birt DF, Hendrich S, Wang W. Pharmacol. Therap. 2001; 90: 157
    • 14c Cushman M, Nagarathnam D. J. Nat. Prod. 1991; 54: 1656
    • 14d Cabrera M, Simoens M, Falchi G, Lavaggi ML, Piro OE, Castellano EE, Vidal A, Azqueta A, Monge A, Lopez-Cerain A, Sagrera G, Seoane G, Cerecetto H, Gonzalez M. Bioorg. Med. Chem. 2007; 15: 3356
    • 14e Kim KS, Kimball SD, Misra RN, Rawlins DB, Hunt JT, Xiao HY, Lu S, Qian L, Han WC, Shan W, Mitt T, Cai ZW, Poss MA, Zhu H, Sack JS, Tokarski JS, Chang CY, Pavletich N, Kamath A, Humphreys WG, Marathe P, Bursuker I, Kellar KA, Roongta U, Batorsky R, Mulheron JG, Bol D, Fairchilds CR, Lee FY, Webster KR. J. Med. Chem. 2002; 45: 3905
  • 15 Kim HK, Son KH, Chang HW, Kang SS, Kim HP. Planta Med. 1999; 65: 465
  • 16 Soike H, Leng-Peschlow E. Planta Med. 1987; 53: 37
  • 17 Havsteen B. Biochem. Pharmacol. 1983; 32: 141
  • 18 Beil W, Birkholz C, Sewing KF. Arzneim. Forsch. 1995; 45: 697
  • 19 Goitsegen A. Proceedings of the 2nd International Meeting on Medicinal and Aromatic Plants. 1981: 117
  • 20 Eaton-Evans J. Br. J. Biomed. Sci. 1994; 51: 358
  • 21 Vijayaraghavan R, Sugendran K, Pant SC, Husain K, Malhotra RC. Toxicology 1991; 69: 34
  • 22 Dicarlo G, Autore G, Izzo AA, Maiolino P, Mascolo N, Viola P, Diurno MV, Capasso F. J. Pharm. Pharmacol. 1993; 45: 1054
  • 23 Ammar NM, El-Diwany AI. J. Islamic Acad. Sci. 1988; 1: 72
  • 24 Polkowski K, Mazurek AP. Acta Pol. Pharm. Drug Res. 2000; 57: 135
    • 25a Baker W. J. Chem. Soc. 1933; 1381
    • 25b Mahal HS, Venkataraman K. J. Chem. Soc. 1934; 1767
  • 27 Yoshida M, Fujino Y, Do T. Org. Lett. 2011; 13: 4526
  • 28 Das J, Ghosh S. Tetrahedron Lett. 2011; 52: 7189
  • 30 Yang Q, Alper H. J. Org. Chem. 2010; 75: 948
  • 31 Rao ML. N, Venkatesh V, Jadhav DN. Synlett 2009; 2597
  • 32 Kim D, Ham K, Hong S. Org. Biomol. Chem. 2012; 10: 7305
  • 33 Eleya N, Malik I, Reimann S, Wittler K, Hein M, Patonay T, Villinger A, Ludwig R, Langer P. Eur. J. Org. Chem. 2012; 1639
  • 34 6-Bromo-3-hydroxyflavone (1) was prepared by the reaction of the corresponding 2′-hydroxychalcone with ethanolic alkaline hydrogenperoxide solution,29 the product was obtained after recrystallization (EtOH) in 56% yield; mp 189–191 °C, lit.35a; mp 180–181 °C, lit.35a; mp 183–184 °C.
    • 35a Chang CT, Chen FC, Chen TS, Hsu KK, Hung M. J. Chem. Soc. 1961; 3414
    • 35b Hasan A, Rasheed L, Malik A. Asian J. Chem. 2007; 19: 937
  • 36 Synthesis of 6-Bromo-4-oxo-2-phenyl-4H-chromen-3-yl Trifluoromethanesulfonate (2) Tf2O (0.53 mL, 3.20 mmol) was added at 0 °C to a solution of 1 (0.5 g, 1.58 mmol) and pyridine (0.64 mL, 7.88 mmol) in CH2Cl2 (15 mL). The reaction mixture was stirred at r.t. under argon atmosphere for 18 h. To the reaction mixture was added toluene (10 mL), and the solution was concentrated in vacuo. The residue was purified by chromatography (EtOAc–heptanes) without aqueous workup to yield 2 as a white solid (0.674 g, 95%); mp 160–162 °C. 1H NMR (300 MHz, CDCl3): δ = 7.42 (d, 1 H, J = 8.9 Hz, ArH), 7.48–7.60 (m, 3 H, ArH), 7.77–7.81 (m, 3 H, ArH), 8.35 (d, 1 H, J = 2.5 Hz, ArH). 19F NMR (282.4 MHz, CDCl3): δ = –73.7. 13C NMR (62.9 MHz, CDCl3): δ = 118.20 (q, J C,F = 320.9, CF3), 119.7 (C), 120.2 (CH), 124.8, 128.1 (C), 128.2 (2 CH), 129.0, 132.7 (CH), 133.8 (C), 137.8 (CH), 154.2, 159.2 (C), 170.0 (CO). IR (KBr): ν = 3083, 3070, 2928 (w), 1651, 1620 (s), 1604, 1538, 1496, 1461, 1451 (m), 1425 (s), 1367 (m), 1335, 1321, 1292, 1269, 1250, 1232 (w), 1212, 1201, 1170, 1139, 1120 (s), 1078, 1060, 1033 (w), 990 (m), 975, 932, 912, 894 (w), 856, 827, 804 (s), 784 (w), 767, 764 (s), 711 (m), 693, 678, 661 (s), 646 (m), 619 (s), 571, 559, 545, 529 (m) cm–1. GC–MS (EI, 70 eV): m/z (%) = 450 (13) [M, 81Br]+, 448 (13) [M, 79Br]+, 319 (12), 318 (59), 317 (35), 316 (59), 315 (53), 290 (19), 289 (100), 287 (95), 261 (17), 259 (12). HRMS (EI, 70 eV): m/z calcd for C16H8BrF3O5S [M, 79Br]+: 447.92224; found: 447.92265; m/z calcd. for C16H8BrF3O5S [M, 81Br]+: 449.92020; found: 449.92043.
  • 37 General Procedure for the Synthesis of 4a–g A 1,4-dioxane solution of 2 (0.11 mmol), arylboronic acid (2.3 equiv), K3PO4 (3.0 equiv), and Pd(PPh3)4 (6 mol%) was heated at 90 °C for 12 h under argon atmosphere. After cooling to 20 °C, H2O was added, and the reaction mixture was extracted with CH2Cl2 (3 × 25 mL). Organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc–heptanes)
  • 38 3,6-Bis(4-methoxyphenyl)-2-phenyl-4H-chromen-4-one (4a) Starting with 2 (50 mg, 0.11 mmol), (4-methoxyphenyl)boronic acid (39 mg, 0.26 mmol), K3PO4 (70 mg, 0.33 mmol), and Pd(PPh3)4 (8 mg, 6 mol%), 4a was prepared as a white solid (48 mg, 90%); mp 181–183 °C. Reaction temperature: 90 °C for 12 h. 1H NMR (250 MHz, CDCl3): δ = 3.73 (s, 3 H, OCH3), 3.79 (s, 3 H, OCH3), 6.77 (d, 2 H, J = 8.8 Hz, ArH), 6.94 (d, 2 H, J = 8.8 Hz, ArH), 7.08 (d, 2 H, J = 8.8 Hz, ArH), 7.18–7.28 (m, 3 H, ArH), 7.34–7.38 (m, 2 H, ArH), 7.49 (d, 1 H, J = 8.7 Hz, ArH), 7.55 (d, 2 H, J = 8.8 Hz, ArH), 7.82 (dd, 1 H, J = 8.8, 2.4 Hz, ArH), 8.37 (d, 1 H, J = 2.3 Hz, ArH). 13C NMR (75.5 MHz, CDCl3): δ = 55.2, 55.4, (OCH3), 113.9, 114.4, 118.4, (CH), 122.4 (C), 123.0 (CH), 123.6 125.0 (C), 128.1, 128.3, 129.6, 129.9 (CH), 132.1 (C), 132.2, 132.4 (CH), 133.5, 137.8, 155.1, 159.0, 159.5, 161.2 (C), 177.7 (CO). IR (KBr): ν = 3060, 3035, 2954, 2929, 2834 (w), 1633, 1605 (s), 1580, 1563 (m), 1557 (s), 1538 (w), 1511 (m), 1494 (w), 1479, 1446, 1439, 1410 (s), 1291, 1282, 1268 (m), 1244, 1229, 1179 (s), 1149, 1122, 1106, 1079, 1055 (w), 1031, 1018 (m), 1005, 973 (w), 928 (m), 916, 905, 848 (w), 835 (m), 813 (s), 797, 770 (m), 732, 709 (w), 689 (m), 673, 661, 652, 639, 624, 584, 579, 563 (w), 585, 539 (m) cm–1. GC–MS (EI, 70 eV): m/z (%) = 434 (76) [M]+, 433 (100) [M – H]+, 418 (4), 390 (6), 311 (24), 226 (4). HRMS (EI, 70 eV): m/z calcd for C29H22O4 [M]+: 434.15126; found: 434.14966; m/z calcd for C29H21O4 [M – H]+: 433.14344; found: 433.14334.
  • 39 General Procedure for the One-Pot Synthesis of 5a–g A toluene–MeOH (9:1) solution of 2 (0.11 mmol), arylboronic acid (1.1 equiv), K3PO4 (1.5 equiv), and Pd(PPh3)4 (3 mol%) was heated at 65 °C for 24 h under argon atmosphere. After cooling to 20 °C, H2O was added, and the reaction mixture was extracted with CH2Cl2 (3 × 25 mL). The organic layers were dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc–heptanes)
  • 40 6-Bromo-3-(4-methoxyphenyl)-2-phenyl-4H-chromen-4-one (5a)
    Starting with 2 (50 mg, 0.11 mmol), 5a was prepared as a white solid (37 mg, 82%), mp 237–238 °C. Reaction temperature: 65 °C for 24 h. 1H NMR (300 MHz, CDCl3): δ = 3.73 (s, 3 H, OCH3), 6.77 (d, 2 H, J = 8.9 Hz, ArH), 7.06 (d, 2 H, J = 8.9 Hz, ArH), 7.19–7.37 (m, 6 H, ArH), 7.70 (dd, 1 H, J = 8.9, 2.5 Hz, ArH), 8.33 (d, 1 H, J = 2.5 Hz, ArH). 13C NMR (62.9 MHz, CDCl3): δ = 55.2 (OCH3), 113.9 (CH), 118.3 (C), 119.9 (CH), 122.6, 124.4, 124.8 (C), 128.2, 128.9, 129.5, 130.1, 132.3 (CH), 133.1 (C), 136.5 (CH), 154.8, 159.1, 161.4 (C), 176.3 (CO). IR (KBr): ν = 3081, 3059, 3015, 2928, 2850, 2832 (w), 1635, 1604 (s), 1574, 1563 (w), 1556 (s), 1510 (w), 1466, 1455, 1444 (m), 1426, 1361 (s), 1288, 1270 (m), 1232, 1219, 1177 (s), 1146, 1121, 1107, 1061, 1048 (w), 1027, 1000 (s), 976, 960 (w), 928 (m), 906, 896, 841 (w), 824, 815 (s), 794 (w), 777 (s), 728 (w), 701, 696, 676, 666, 653, 648 (m), 640, 619, 610, 551 (w), 540, 530 (m) cm–1. GC–MS (EI, 70 eV): m/z (%) = 408 (67) [M, 81Br]+, 407 (100) [M – H, 81Br]+, 406 (69) [M, 79Br]+, 405 (84) [M – H, 79Br]+, 364 (5), 362 (5), 327 (7), 283 (6), 255 (6), 226 (5), 208 (22). HRMS (ESI-TOF/MS): m/z calcd. for C22H16BrO3 [M + H, 79Br]+: 407.02773; found: 407.0270; m/z calcd for C22H16BrO3 [M + H, 81Br]+: 409.02597; found: 409.02509.
  • 41 General Procedure for the One-Pot Synthesis of 6a–d A toluene–MeOH (9:1) solution of 2 (0.17 mmol), Ar1B(OH)2 (1.0 equiv), K3PO4 (1.5 equiv), and Pd(PPh3)4 (3 mol%) was heated at 65 °C for 36 h under argon atmosphere. After cooling to 20 °C, Ar2B(OH)2 (1.3 equiv), Pd(PPh3)4 (6 mol%), and MeOH (0.2 mL) were added, and the reaction mixture was heated at 105 °C for further 12 h. The reaction mixture was cooled again to 20 °C, H2O was added, and the reaction mixture was extracted with CH2Cl2 (3 × 25 mL).The combined organic layers were dried over Na2SO4, filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (EtOAc–heptanes)
  • 42 3-(4-Ethoxyphenyl)-2-phenyl-6-(m-tolyl)-4H-chromen-4-one (6c)
    Starting with 2 (75 mg, 0.17 mmol), (4-ethoxyphenyl)boronic acid as Ar1B(OH)2 (29 mg, 0.17 mmol), K3PO4 (53 mg, 0.26 mmol), Pd(PPh3)4 (6 mg, 3 mol%), and (3-methylphenyl)boronic acid as Ar2B(OH)2 (30 mg, 0.22 mmol), 6c was prepared as a light yellow highly viscous oil (66 mg, 91%). Reaction temperature: 65 °C for 36 h, then 105 °C for 12 h. 1H NMR (300 MHz, CDCl3): δ = 1.33 (t, 3 H, J = 7.0 Hz, CH3), 2.36 (s, 3 H, CH3), 3.95 (q, 2 H, J = 7.0 Hz, OCH2), 6.75 (d, 2 H, J = 8.8 Hz, ArH), 7.07 (d, 2 H, J = 8.8 Hz, ArH), 7.11–7.31 (m, 5 H, ArH), 7.34–7.43 (m, 4 H, ArH), 7.50 (d, 1 H, J = 8.7 Hz, ArH), 7.84 (dd, 1 H, J = 8.7, 2.3 Hz, ArH), 8.41 (d, 1 H, J = 2.3 Hz, ArH). 13C NMR (75.5 MHz, CDCl3): δ = 14.9, 21.6 (CH3), 63.4 (OCH2), 114.4, 118.4 (CH), 122.5, 123.6 (C), 124.1, 124.3 (CH), 124.8 (C), 128.0, 128.1, 128.5, 128.9, 129.6, 129.9, 132.4, 132.6 (CH), 133.5, 138.3, 138.7, 139.5, 155.4, 158.5, 161.2 (C), 177.7 (CO). IR (KBr): ν = 3055, 3034, 2975, 2922, 2871 (w), 1636, 1606 (s), 1558 (m), 1510 (s), 1494 (w), 1474 (s), 1444 (m), 1405, 1393 (w), 1361 (s), 1285, 1270 (w), 1224, 1174 (s), 1143, 1114, 1094, 1076 (w), 1041, 1029 (m), 1012, 1000, 933, 919, 845 (w), 825, 782, 769, 729, 718, 692 (s), 665 (w), 643, 631 (m), 597, 564, 531 (w) cm–1. GC–MS (EI, 70 eV): m/z (%) = 432 (79) [M]+, 431 (100) [M – H]+, 403 (18), 375 (5), 222 (10). HRMS (EI, 70 eV): m/z calcd for C30H24O3 [M]+: 432.17200; found: 432.17124.
  • 43 Joo YH, Kim JK. Kang S.-H, Noh M.-S, Ha J.-Y, Choi JK, Lim KM, Lee CH, Chung S. Bioorg. Med. Chem. 2003; 13: 413

    • For reviews of site-selective palladium(0)-catalyzed cross-coupling reactions, see:
    • 44a Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 44b Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283
    • 44c Wang R, Manabe K. Synthesis 2009; 1405
  • 46 Akrawi OA, Nagy GZ, Patonay T, Villinger A, Langer P. Tetrahedron Lett. 2012; 53: 3206