Synthesis 2013; 45(8): 1069-1075
DOI: 10.1055/s-0032-1318477
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of N-Substituted Amides from Alcohols and Amides

Iku Okada
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   eMail: kitayo@cc.tuat.ac.jp
,
Kazuhiro Chiba
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   eMail: kitayo@cc.tuat.ac.jp
,
Yoshikazu Kitano*
Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan   Fax: +81(42)3675700   eMail: kitayo@cc.tuat.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 18. Januar 2013

Accepted after revision: 25. Februar 2013

Publikationsdatum:
18. März 2013 (online)


Abstract

A facile and versatile method for preparing N-substituted amides from alcohols and amides using a Brønsted acid and an alkali metal halide has been developed. Treatment of tertiary alcohols and amides in the presence of an alkali metal halide or methanesulfonic acid in trifluoroacetic acid at elevated temperature afforded the corresponding N-substituted amides in moderate to high yields. Tertiary alcohols with various functional groups such as ether, ester, imide, carbamate, and halogen groups were tolerated under these conditions. This method can be used for the efficient and practical synthesis of various N-substituted formamides without the use of unmanageable cyano compounds.

Supporting Information

 
  • References

    • 2a Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discovery Dev. 2007; 10: 768
    • 2b Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
    • 2c Gaudin JM, Lander T, Nikolaenko O. Chem. Biodiversity 2008; 5: 617
    • 3a Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048
    • 3b Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
    • 4a Chen HG, Goel OP, Kesten S, Knobelsdorf J. Tetrahedron Lett. 1996; 37: 8129
    • 4b Ho TL, Kung LR, Chein RJ. J. Org. Chem. 2000; 65: 5774
    • 4c Okada I, Kitano Y. Synthesis 2011; 3997
    • 5a Baldwin JE, O’Neil IA. Synlett 1990; 603
    • 5b Launay D, Booth S, Clemens I, Merritt A, Bradley M. Tetrahedron Lett. 2002; 43: 7201
    • 5c Porcheddu A, Giacomelli G, Salaris M. J. Org. Chem. 2005; 70: 2361
    • 5d Kim S, Yi KY. Tetrahedron Lett. 1986; 27: 1925
  • 6 Shokova EA, Musulu T, Luzikov TN, Kovalev VV. Russ. J. Org. Chem. 1999; 35: 844
    • 7a Das B, Reddy PR, Sudhakar C, Lingaiah M. Tetrahedron Lett. 2011; 52: 3521
    • 7b Wang GW, Shen YB, Wu XL. Eur. J. Org. Chem. 2008; 4367
    • 7c Henneuse C, Boxus T, Tesolin L, Pantano G, Brynaert JM. Synthesis 1996; 495
  • 8 Kitano Y, Chiba K, Tada M. Synthesis 2001; 437
  • 9 Kayser MM, Clouthier CM. J. Org. Chem. 2006; 71: 8424