Synlett 2013; 24(7): 889-890
DOI: 10.1055/s-0032-1318474
spotlight
© Georg Thieme Verlag Stuttgart · New York

Carbon Tetrabromide

Zhong-Yan Cao
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China   Email: a10052130234@126.com
› Author Affiliations
Further Information

Publication History

Publication Date:
18 March 2013 (online)

Introduction

Carbon tetrabromide, also known as tetrabromomethane, is a commercially available white solid which is stable at room temperature and can be easily handled. It is prepared either by the complete bromination of methane or by the reaction of tetrachloromethane with aluminum bromide. In combination with a tertiary phosphine, it has been used for the bromination of various functional groups, such as alcohols (Appel reaction),[ 1 ] N-heterocycles,[ 2 ] ethers,[ 3 ] and for converting aldehydes/ketones into 1,1-dibromo­alkenes[ 4 ] or alkynes[ 5 ] (Corey–Fuchs reaction). In addition, carbon tetrabromide is a highly efficient catalyst for versatile reactions, including acylation of phenols, alcohols and thiols,[ 6 ] acetalization and tetrahydropyranylation[ 7 ] and oxidation of aromatic methyl ketones[ 8 ] or alkenes[ 9 ] to carboxylic acids under very mild conditions. Carbon tetrabromide can further promote the synthesis of thioureas and thiuram disulfides.[ 10 ] Apart from these applications, carbon tetrabromide is also used as a crystal growth[ 11 ] and chain transfer agent[ 12 ] in polymer chemistry.

 
  • References

    • 1a Dyson BS, Burton JW, Sohn T, Kim B, Bae H, Kim D. J. Am. Chem. Soc. 2012; 134: 11781
    • 1b Lee J, Kim J. Chem. Mater. 2012; 24: 2817
  • 2 Kijrungphaiboon W, Chantarasriwong O, Chavasiri W. Tetrahedron Lett. 2012; 53: 674
  • 3 Billing P, Brinker UH. J. Org. Chem. 2012; 77: 11227
    • 4a Arai N, Miyaoku T, Teruya S, Mori A. Tetrahedron Lett. 2008; 49: 1000
    • 4b Jouvin K, Coste A, Bayle A, Legrand F, Karthikeyan G, Tadiparthi K, Evano G. Organometallics 2012; 31: 7933
    • 5a Jacobi PA, Onyango EO. J. Org. Chem. 2012; 77: 7411
    • 5b Ni Z, Wang S, Mao H, Pan Y. Tetrahedron Lett. 2012; 53: 3907
    • 5c Liu J, Dai F, Yang Z, Wang S, Xie K, Wang A, Chen X, Tan Z. Tetrahedron Lett. 2012; 53: 5678
    • 5d Zhao M, Kuang C, Yang Q, Cheng X. Tetrahedron Lett. 2011; 52: 992
  • 6 Zhang L, Luo Y, Fan R, Wu J. Green Chem. 2007; 9: 1022
  • 7 Huo C, Chan TK. Adv. Synth. Catal. 2009; 351: 1933
  • 8 Hirashima S, Nobuta T, Tada N, Itoh A. Synlett 2009; 2017
  • 9 Hirashima S, Kudo Y, Nobuta T, Tada N, Itoh A. Tetrahedron Lett. 2009; 50: 4328
  • 10 Liang F, Tan J, Piao C, Liu Q. Synthesis 2008; 3579
  • 11 Rosokha SV, Vinakos MK. Cryst. Growth Des. 2012; 12: 4149
  • 12 Liu Y.-Y, Chen H, Ishizu K. Langmuir 2011; 27: 1168
  • 13 Das B, Damodar K, Bhunia N, Shashikanth B. Tetrahedron Lett. 2009; 50: 2072
  • 14 Tada N, Ban K, Ishigami T, Nobuta T, Miura T, Itoh A. Tetrahedron Lett. 2011; 52: 3821
  • 15 Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem.–Eur. J. 2012; 18: 7336
  • 16 Fu X.-L, Huang P, Zhou G.-Y, Hu Y.-Q, Dong D.-W. Tetrahedron 2011; 67: 6347
  • 17 Jiang H.-Z, Lu W.-J, Cai Y.-S, Wan W, Wu S.-X, Zhu S.-Z, Hao J. Tetrahedron 2013; 69: 2150
  • 18 Tan J, Liang F.-S, Wang Y.-M, Cheng X, Liu Q, Yuan H.-J. Org. Lett. 2008; 10: 2485
  • 19 Raju BC, Pradeep DV. S, Reddy PP, Rao JM. Lett. Org. Chem. 2008; 5: 450