Synlett 2013; 24(4): 424-431
DOI: 10.1055/s-0032-1318103
account
© Georg Thieme Verlag Stuttgart · New York

Hypervalent Iodine Reagents as Powerful Electrophiles

Michael Brown
Cardiff University, School of Chemistry, Park Place, Cardiff CF10 3AT, UK   Fax: +44(29)20876968   Email: wirth@cf.ac.uk
,
Umar Farid
Cardiff University, School of Chemistry, Park Place, Cardiff CF10 3AT, UK   Fax: +44(29)20876968   Email: wirth@cf.ac.uk
,
Thomas Wirth*
Cardiff University, School of Chemistry, Park Place, Cardiff CF10 3AT, UK   Fax: +44(29)20876968   Email: wirth@cf.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 28 November 2012

Accepted after revision: 22 December 2012

Publication Date:
18 January 2013 (online)


Abstract

Hypervalent iodine reagents have been investigated as very powerful electrophiles in many different reactions. Efficient formation of new carbon–heteroatom bonds as well as carbon–­carbon bonds can be achieved typically under mild reaction conditions with these metal-free reagents. Enantiomerically pure reagents provide the potential for stereoselective reactions and this aspect is highlighted in this account.

1 Introduction

2 Stereoselective Reactions

3 Reactions with Alkenes

3.1 Iodolactonizations

3.2 Oxyaminations of Alkenes

3.3 Aziridinations of Alkenes

4 α-Functionalization of Carbonyl Compounds and Catalysis

5 Rearrangements

6 Arylations

7 Oxidations

8 Summary and Outlook

 
  • References

  • 1 Hartmann C, Mayer V. Chem. Ber. 1893; 26: 1727
  • 2 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
    • 3a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 3b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656 ; Angew. Chem. 2005, 117, 3722
    • 3c Moriarty RM. J. Org. Chem. 2005; 70: 2893
    • 3d Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. In Topics in Current Chemistry. Vol. 224. Wirth T. Springer; Berlin: 2003
  • 4 Bougault MJ. R. Acad. Sci. 1904; 139: 864
    • 5a Koser GF In Encyclopedia of Reagents for Organic Synthesis . Vol. 4. Paquette LA. John Wiley & Sons; Chichester: 1995: 2782
    • 5b Moriarty RM, Vaid RK, Koser GF. Synlett 1990; 365
    • 6a Wirth T, Hirt UH. Tetrahedron: Asymmetry 1997; 8: 23
    • 6b Hirt UH, Spingler B, Wirth T. J. Org. Chem. 1998; 63: 7674
  • 7 Wirth T, Fragale G, Spichty M. J. Am. Chem. Soc. 1998; 120: 3376
  • 8 Hirt UH, Schuster MF. H, French AN, Wiest OG, Wirth T. Eur. J. Org. Chem. 2001; 1569
  • 9 Guilbault A.-A, Legault CY. ACS Catal. 2012; 2: 219
  • 10 French AN, Bissmire S, Wirth T. Chem. Soc. Rev. 2004; 33: 354
    • 11a Grossman RB, Trupp RJ. Can. J. Chem. 1998; 76: 1233
    • 11b Brown RS, Cui XL. J. Org. Chem. 2000; 65: 5653
  • 12 Haas J, Piguel S, Wirth T. Org. Lett. 2002; 4: 297
  • 13 Brown RS, Neverov AA. J. Org. Chem. 1998; 63: 5977
  • 14 Haas J, Bissmire S, Wirth T. Chem. Eur. J. 2005; 11: 5777
  • 15 De La Mare PB. D In Electrophilic Halogenation . Cambridge University; Cambridge: 1976
  • 16 Sakakura A, Ukai A, Ishihara K. Nature (London) 2007; 445: 900
  • 17 Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938 ; Angew. Chem. 2012, 124, 11098
    • 18a Cardona F, Goti A. Nat. Chem. 2009; 1: 269
    • 18b Donohoe TJ, Callens CK. A, Flores A, Lacy AR, Rathi AH. Chem. Eur. J. 2011; 17: 58
  • 19 Li G, Chang H.-T, Sharpless KB. Angew. Chem. Int. Ed. Engl. 1996; 35: 451 ; Angew. Chem. 1996, 108, 449
    • 20a Cochran BM, Michael FE. Org. Lett. 2008; 10: 5039
    • 20b Li H, Widenhoefer RA. Tetrahedron 2010; 66: 4827
  • 21 Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462 ; Angew. Chem. 2012, 124; 3518
  • 22 Ochiai M. Top. Curr. Chem. 2003; 224: 5
    • 23a Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
    • 23b Shahzad SA, Venin C, Wirth T. Eur. J. Org. Chem. 2010; 3465
    • 24a Fujita M, Okuno S, Lee HJ, Sugimura T, Okuyama T. Tetrahedron Lett. 2007; 48: 8691
    • 24b Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175 ; Angew. Chem. 2010, 122, 2221
    • 25a Makosza M, Sulikowski D, Maltsev O. Synlett 2008; 1711
    • 25b Foschi F, Landini D, Lupi V, Mihali V, Penso M, Pilati T, Tagliabue A. Chem. Eur. J. 2010; 16: 10667
  • 26 Aziridines and Epoxides in Organic Synthesis. Yudin AK. Wiley-VCH; Weinheim: 2006
  • 27 Richardson RD, Desaize M, Wirth T. Chem. Eur. J. 2007; 13: 6745
  • 28 Yoshimura A, Middleton KR, Zhu C, Nemykin VN, Zhdankin VV. Angew. Chem. Int. Ed. 2012; 51: 8059 ; Angew. Chem. 2012, 124, 8183
  • 29 Arrica MA, Wirth T. Eur. J. Org. Chem. 2005; 395
    • 30a Motherwell WB, Greaney MF, Tocher DA. J. Chem. Soc., Perkin Trans. 1 2002; 2809
    • 30b Motherwell WB, Greaney MF, Tocher DA. J. Chem. Soc., Perkin Trans. 1 2002; 2816
    • 31a Ochiai M, Takeuchi Y, Katayama T, Sueda T, Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 31b Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193 ; Angew. Chem. 2005, 117, 6349
    • 31c Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402 ; Angew. Chem. 2006, 118, 4510
    • 32a Richardson RD, Page TK, Altermann S, Paradine SM, French AN, Wirth T. Synlett 2007; 538
    • 32b Yamamoto Y, Togo H. Synlett 2006; 798
  • 33 Altermann SM, Richardson RD, Page TK, Schmidt RK, Holland E, Mohammed U, Paradine SM, French AN, Richter C, Bahar AM, Witulski B, Wirth T. Eur. J. Org. Chem. 2008; 5315
  • 34 Farooq U, Schäfer S, Shah AA, Freudendahl DM, Wirth T. Synthesis 2010; 1023
  • 35 Tanaka A, Togo H. Synlett 2009; 3360
  • 36 Sheng J, Li X, Tang M, Gao B, Huang G. Synthesis 2007; 1165
  • 37 Yamamoto Y, Kawano Y, Toy PH, Togo H. Tetrahedron 2007; 63: 4680
  • 38 Rodríguez A, Moran WJ. Synthesis 2012; 44: 1178
  • 39 Uyanik M, Okamoto H, Yasui T, Ishihara K. Science (Washington, DC, U.S.) 2010; 328: 1376
  • 40 Cram DJ. J. Am. Chem. Soc. 1949; 71: 3863
    • 41a Olah GA, Porter RD. J. Am. Chem. Soc. 1970; 92: 7627
    • 41b Del RioE, Menéndez MI, López R, Sordo TL. J. Phys. Chem. A 2000; 104: 5568
  • 42 Winstein S, Grunwald E. J. Am. Chem. Soc. 1948; 70: 828
  • 43 Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157
  • 44 Singh FV, Rehbein J, Wirth T. ChemistryOpen 2012; 1: 245
    • 45a Phipps RJ, Gaunt MJ. Science (Washington, DC, U.S.) 2009; 323: 1593
    • 45b Allen A, MacMillan WD. C. J. Am. Chem. Soc. 2011; 133: 4260
    • 45c Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
  • 46 Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052 ; Angew. Chem. 2009, 121, 9214
  • 47 Wen J, Zhang R.-Y, Chen S.-Y, Zhang J, Yu X.-Q. J. Org. Chem. 2012; 77: 766
  • 48 Ackermann L, Dell’Acqua M, Fenner S, Vicente R, Sandmann R. Org. Lett. 2011; 13: 2358
  • 49 Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 8251
  • 50 Petersen TB, Khan R, Olofsson B. Org. Lett. 2011; 13: 3462
  • 51 Ochiai M, Kitagawa Y, Takayama N, Takaoka Y, Shiro M. J. Am. Chem. Soc. 1999; 121: 9233
  • 52 Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
  • 53 Bielawski M, Aili D, Olofsson B. J. Org. Chem. 2008; 73: 4602
  • 54 Malmedy, F.; Brown, M.; Wirth, T. unpublished results.
  • 55 Norrby P.-O, Petersen TB, Bielawski M, Olofsson B. Chem. Eur. J. 2010; 16: 8251
    • 56a Wirth T. Angew. Chem. Int. Ed. 2001; 40: 2812 ; Angew. Chem. 2001, 113, 2893
    • 56b Wirth T In Organic Synthesis Highlights V . Schmalz H.-G, Wirth T. Wiley-VCH; Weinheim: 2003: 144-150
    • 56c Ladziata U, Zhdankin VV. Synlett 2007; 527
    • 56d Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659
    • 56e Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524 ; Angew. Chem. 2011, 123, 1562
    • 56f Zhdankin VV. J. Org. Chem. 2011; 76: 1185
    • 56g Bernini R, Fabrizi G, Pouységu L, Deffieux D, Quideau S. Curr. Org. Synth. 2012; 9: 650
    • 57a Harayama Y, Yoshida M, Kamimura D, Wada Y, Kita Y. Chem. Eur. J. 2006; 12: 4893
    • 57b Moriarty RM, Penmasta R, Prakash I. Tetrahedron Lett. 1987; 28: 877
  • 58 Richardson RD, Zayed JM, Altermann S, Smith D, Wirth T. Angew. Chem. Int. Ed. 2007; 46: 6529 ; Angew. Chem. 2007, 119, 6649
  • 59 Schäfer S, Wirth T. Angew. Chem. Int. Ed. 2010; 49: 2786 ; Angew. Chem. 2010, 122, 2846