Synlett 2013; 24(2): 169-172
DOI: 10.1055/s-0032-1317950
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of a (1R,5R,9R)-2-Azabicyclo[3.3.1]nonane-9-carboxylic Acid with an Embedded Morphan Motif: A Multipurpose Product

Narciso M. Garrido*
Departamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain   Fax: +34(923)294574   Email: nmg@usal.es
,
Carlos T. Nieto
Departamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain   Fax: +34(923)294574   Email: nmg@usal.es
,
David Díez
Departamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain   Fax: +34(923)294574   Email: nmg@usal.es
› Author Affiliations
Further Information

Publication History

Received: 26 October 2012

Accepted after revision: 05 December 2012

Publication Date:
04 January 2013 (online)


Abstract

A convenient asymmetric synthesis of (1R,5R,9R)-2-aza­bicyclo[3.3.1]nonane-9-carboxylic acid is described, starting from (2E,7E)-dimethyl nonadienedioate. The route involves a stereo­selective domino Michael–Dieckman process that furnishes a 1,2,3-trisubstituted cyclohexane derivative bearing three adjacent stereocenters with full stereochemical control. A subsequent chemoselective transformation of one of the side-chain ester groups allows an effective second cyclization leading to the morphan motif. The versatility of this novel amino acid for the generation of molecular complexity was tested by elaborating a tripeptide in homogeneous phase.

 
  • References and Notes

    • 1a Juaristi E, Soloshonok VA. Enantioselective Synthesis of β-Amino Acids . 2nd ed. John Wiley and Sons; Hoboken: 2005
    • 1b Seebach D, Matthews JL. Chem. Commun. 1997; 21: 2015
    • 2a Hanessian S, Auzzas L. Acc. Chem. Res. 2008; 41: 1241
    • 2b Price JL, Horne WS, Gellman SH. J. Am. Chem. Soc. 2010; 132: 12378
    • 2c Gellman SH. Acc. Chem. Res. 1998; 31: 173
    • 3a Trost BM, Tang W, Toste FD. J. Am. Chem. Soc. 2005; 127: 14785
    • 3b Gates M, Tschudi G. J. Am. Chem. Soc. 1952; 74: 1109
    • 3c Toth JE, Fuchs PL. J. Org. Chem. 1987; 52: 473
  • 4 Staub GM, Gloer JB, Wicklow DT, Dowd PF. J. Am. Chem. Soc. 1992; 114: 1015
    • 5a Kong F, Andersen RJ, Allen TM. J. Am. Chem. Soc. 1994; 116: 6007
    • 5b Proto S, Amat M, Pérez M, Ballette R, Romagnoli F, Mancinelli A, Bosch J. Org. Lett. 2012; 14: 3916
  • 6 Fujii K, Sivonen K, Adachi K, Noguchi K, Shimizu Y, Sano H, Hirayama K, Suzuki M, Harada K.-I. Tetrahedron Lett. 1997; 38: 5529
  • 7 Quirante J, Escolano C, Diaba F, Bonjoch J. Heterocycles 1999; 50: 731
  • 8 Aurrecoechea JM, Gorgojo JM, Saornil C. J. Org. Chem. 2005; 70: 9640
  • 9 Diaba F, Bonjoch J. Org. Biomol. Chem. 2009; 7: 2517
    • 10a Garrido NM, Rubia AG, Nieto C, Díez D. Synlett 2010; 587
    • 10b Garrido NM, Díez D, Domínguez SH, Sanchez MR, García M, Urones JG. Molecules 2006; 11: 435
    • 10c Garrido NM, Díez D, Domínguez SH, García M, Sánchez MR, Davies SG. Tetrahedron: Asymmetry 2006; 17: 2183
    • 10d Davies SG, Díez D, Domínguez SH, Garrido NM, Kruchinin D, Price PD, Smith AD. Org. Biomol. Chem. 2005; 3: 1284
    • 10e Urones JG, Garrido NM, Díez D, El Hammoumi MM, Domínguez SH, Casaseca JA, Davies SG, Smith AD. Org. Biomol. Chem. 2004; 2: 364
    • 10f Garrido NM, El Hammoumi MM, Díez D, García M, Urones JG. Molecules 2004; 9: 373
    • 10g Urones JG, Garrido NM, Díez D, Domínguez SH, Davies SG. Tetrahedron: Asymmetry 1999; 10: 1637
    • 10h Urones JG, Garrido NM, Díez D, Domínguez SH, Davies SG. Tetrahedron: Asymmetry 1997; 8: 2683
  • 11 Scheffer JR, Wostradowski RA. J. Org. Chem. 1972; 37: 4317
    • 12a Davies SG, Fletcher AM, Roberts PM, Thomson JE. Tetrahedron: Asymmetry 2012; 23: 1111

    • This review updates the scope and applications of the conjugate addition of enantiomerically pure lithium amides published in:
    • 12b Davies SG, Smith AD, Price PD. Tetrahedron: Asymmetry 2005; 16, 2833
  • 13 Nieto, C. T. PhD Dissertation, in progress.
  • 14 The stereochemistry of this compound has been demonstrated in references 10d,g,c; the latter reports that (R)-6-methylcyclohex-1-ene carboxylate was obtained from an analogue of the enantiomer of 14.
  • 15 Yoon NM, Chwang SP, Krishnamurthy S, Stocky TP, Brown HC. J. Org. Chem. 1973; 38: 2786
  • 16 Barco A, Baricordi N, Benetti S, De Risi C, Pollinib GP, Zanirato V. Tetrahedron 2007; 63: 4278
  • 17 Ella-Menye JR, Nie X, Wang G. Carbohydr. Res. 2008; 343: 1743
  • 18 Typical Procedure Mesylate 18 (18 mg, 0.047 mmol) was dissolved in CH2Cl2–TFA 1:1 (5 mL) and stirred 2 h at r.t. Solvent was evaporated, and the crude was further dissolved in EtOH–Et3N 1:1 (5 mL). The mixture was refluxed at 80 °C for 20 h. The solvent was again evaporated and the crude dissolved in EtOAc (30 mL) and extracted with HCl (0.5 M, 30 mL). The aqueous phase was basified to pH 8 with NaOH (1 M) and extracted with EtOAc. The organic phase was dried over Na2SO4, filtered, and the solvent was removed at reduced pressure. Purification of the crude product by flash chromatography (CHCl3–MeOH, 9:1) provided 21 (7.1 mg, 84%) as an oil. [α]D 20 = –4.01 (c 0.71, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.65–2.24 (m, 8 H, H-4, H-6, H-7, H-8), 2.52 (s, 1 H, H-5), 3.06 (s, 1 H, H-9), 3.27 (dd, J = 13.5, 7.3 Hz, 1 H, H-3eq), 3.44 (dt, J = 13.5, 8.0 Hz, 1 H, H-3ax), 3.73 (s, 3 H, OCH3), 3.91 (br s, 1 H, H-1), 5.51 (br s, 1 H, NH). IR (neat): 3396, 2931, 2858, 1733, 1426, 1384, 1287, 1203, 1124, 1405, 1023 cm–1. 13C NMR (50 MHz, CDCl3): δ = 19.8, 23.4, 25.5, 26.9, 28.9, 40.1, 43.6, 47.7, 52.7, 171.3. HRMS: m/z calcd for C10H18NO2 [M + H]: 184.1332; found: 184.1313.
  • 19 All the obtained products have been fully characterized including high-resolution mass spectrometry.
  • 20 Kulig K, Szwaczkiewicz M. Mini-Rev. Med. Chem. 2008; 8: 1214