Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(1): 130-134
DOI: 10.1055/s-0032-1317705
DOI: 10.1055/s-0032-1317705
letter
Synthesis of Multisubstituted Indenes via Iron-Catalyzed Domino Reaction of Benzylic Compounds and Alkynes
Further Information
Publication History
Received: 18 October 2012
Accepted after revision: 07 November 2012
Publication Date:
06 December 2012 (online)
Abstract
A novel approach to synthesizing multisubstituted indenes by iron-catalyzed domino reaction of benzylic compounds and alkynes under mild conditions was developed. This system could be applied to various available substrates in a one-step synthetic procedure in moderate to good yields.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Nugiel DA, Etzkom A.-M, Vidwans A, Benfield PA, Boisclair M, Burton CR, Cox S, Czerniak PM, Doleniak D, Seitz SP. J. Med. Chem. 2001; 44: 1334
- 1b Frédérick R, Dumont W, Ooms F, Aschenbach L, van der Schyf CJ, Castagnoli N, Wouters J, Krief A. J. Med. Chem. 2006; 49: 3743
- 1c Heintzelman GR, Averill KM, Dodd JH, Demarest KT, Tang Y, Jackson PF. WO 2003088963, 2003
- 1d Safak C, Simsek R, Altas Y, Boydag S, Erol K. Boll. Chim. Farm. 1997; 136: 665
- 2a Anstead GM, Wilson SR, Katzenellenbogen JA. J. Med. Chem. 1989; 32: 2163
- 2b Wang B. Coord. Chem. Rev. 2006; 250: 242
- 2c Xi Q, Zhang W, Zhang X. Synlett 2006; 945
- 2d Barberá J, Rakitin OA, Ros MB, Torroba T. Angew. Chem. Int. Ed. 1998; 37: 296
- 2e Banide EV, O’Connor C, Fortune N, Ortin Y, Milosevic S, Müller-Bunz H, McGlinchey MJ. Org. Biomol. Chem. 2010; 8: 3997
- 2f Zargarian D. Coord. Chem. Rev. 2002; 233-234: 157
- 2g Morinaka K, Ubukata T, Yokoyama Y. Org. Lett. 2009; 11: 3890
- 2h Yang J, Lakshmikantham MV, Cava MP, Lorcy D, Bethelot JR. J. Org. Chem. 2000; 65: 6739
- 2i Alt HG, Köppl A. Chem. Rev. 2000; 100: 1205
- 3a Zhou X, Zhang H, Xie X, Li Y. J. Org. Chem. 2008; 73: 3958
- 3b Marion N, Díez-González S, de Frémont P, Noble AR, Nolan SP. Angew. Chem. Int. Ed. 2006; 45: 3647
- 3c Kurouchi H, Sugimoto H, Otani Y, Ohwada T. J. Am. Chem. Soc. 2010; 132: 807
- 3d Womack GB, Angeles JG, Fanelli VE, Heyer CA. J. Org. Chem. 2007; 72: 7046
- 3e Zhu Z.-B, Shi M. Chem. Eur. J. 2008; 14: 10219
- 3f Zhang X.-M, Tu Y.-Q, Jiang Y.-J, Zhang Y.-Q, Fan C.-A, Zhang F.-M. Chem. Commun. 2009; 4726
- 3g Li C, Zeng Y, Wang J. Tetrahedron Lett. 2009; 50: 295
- 3h Khan ZA, Wirth T. Org. Lett. 2009; 11: 229
- 3i Zhang D, Yum EK, Liu Z, Larock RC. Org. Lett. 2005; 7: 4963
- 3j Bi H.-P, Liu X.-Y, Gou F.-R, Guo L.-N, Duan X.-H, Liang Y.-M. Org. Lett. 2007; 9: 3527
- 3k Bryan CS, Lautens M. Org. Lett. 2010; 12: 2754
- 3l Rayabarapu DK, Cheng C.-H. Chem. Commun. 2002; 9: 942
- 3m Deng R, Sun L, Li Z. Org. Lett. 2007; 9: 5207
- 3n Kuninobu Y, Kawata A, Takai K. J. Am. Chem. Soc. 2005; 127: 13498
- 3o Miyamoto M, Harada Y, Tobisu M, Chatani N. Org. Lett. 2008; 10: 2975
- 3p Kuninobu Y, Tokunaga Y, Kawata A, Takai K. J. Am. Chem. Soc. 2006; 128: 202
- 3q Chang K.-J, Rayabarapu DK, Cheng C.-H. J. Org. Chem. 2004; 69: 4781
- 4a Bu X, Hong J, Zhou X. Adv. Synth. Catal. 2011; 353: 2111
- 4b Liu C.-R, Yang F.-L, Jin Y.-Z, Ma X.-T, Cheng D.-J, Li N, Tian S.-K. Org. Lett. 2010; 12: 3832
- 4c Li H, Li W, Liu W, He Z, Li Z. Angew. Chem. Int. Ed. 2011; 50: 2975
- 5a Rong Y, Li R, Lu W. Organometallics 2007; 26: 4376
- 5b Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505
- 5c Li Y.-Z, Li B.-J, Lu X.-Y, Lin S, Shi Z.-J. Angew. Chem. Int. Ed. 2009; 48: 3817
- 5d Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
- 6a Liu X, Zhang Y, Wang L, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2008; 73: 6207
- 6b Pelletier G, Powell DA. Org. Lett. 2006; 8: 6031
- 6c Powell DA, Fan H. J. Org. Chem. 2010; 75: 2726
- 6d Ye Y.-H, Zhang J, Wang G, Chen S.-Y, Yu XQ. Tetrahedron 2011; 67: 4649
- 6e Wang Z, Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2008; 10: 1863
- 6f Xia Q, Chen W, Qiu H. J. Org. Chem. 2011; 76: 7577
- 7 Qin C, Zhou W, Chen F, Ou Y, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 12595
- 8a Rybtchinski B, Milstein D. Angew. Chem. Int. Ed. 1999; 38: 870
- 8b Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
- 8c Coperet C. Chem. Rev. 2010; 110: 656
- 8d Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 8e Ramesh D, Ramulu U, Rajaram S, Prabhakar P, Venkateswarlu Y. Tetrahedron Lett. 2010; 51: 4898
- 8f Li Z, Yu R, Li H. Angew. Chem. Int. Ed. 2008; 47: 7497
- 8g Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 9a Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
- 9b Bolm C. Nat. Chem. 2009; 1: 420
- 9c Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317
- 9d Fürstner A, Leitner A, Méndez M, Krause H. J. Am. Chem. Soc. 2002; 124: 13856
- 9e Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
- 9f Bauer EB. Curr. Org. Chem. 2008; 12: 1341
- 10a Stang PJ, Anderson AG. J. Am. Chem. Soc. 1978; 100: 1520
- 10b Viswanathan GS, Wang MW, Li CJ. Angew. Chem. Int. Ed. 2002; 41: 2138
- 10c Stang PJ, Rappoport Z, Hanack M, Subramanian LR. Vinyl Cations. Academic Press; New York: 1979
- 11 General Procedure for the Iron-Catalyzed Domino Reaction – Synthesis of 6-Benzhydryl-1,2,3-triphenyl-1H-indene (3aa) Diphenylacetylene 1a (44.5 mg, 0.25 mmol), FeCl2 (3.1 mg, 10 mmol%), and NBS (97.9 mg, 0.55 mmol) were added to a flask with a magnetic stirring bar. The tube was evacuated and refilled with N2, and then diphenylmethane (2a, 210 μL, 1.25 mmol) and DCE (2 mL) was added. The resulting mixture was stirred at 80 °C for 10 h. After cooling to r.t., the mixture was diluted with EtOAc and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (PE as eluent) to give product 3aa (75% yield); white solid; mp 155–157 °C. 1H NMR (300 MHz, CDCl3): δ = 7.40–7.28 (m, 5 H), 7.22–7.13 (m, 8 H), 7.10–6.98 (m, 14 H), 6.98–6.94 (m, 1 H), 5.50 (s, 1 H), 5.03 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 148.4, 145.5, 144.1, 144.0, 143.4, 141.6, 140.4, 139.7, 135.5, 129.4, 129.2, 129.1, 128.6, 128.5, 128.2, 128.1, 127.8, 127.4, 126.5, 126.1, 125.3, 120.1, 57.9, 56.8.